ssc.variableGene | R Documentation |
Identify variable genes which will be used in downstream analysis. Multiple methods are available.
ssc.variableGene(
obj,
method = "HVG.sd",
sd.n = 1500,
mean.thre = 0.1,
fdr.thre = 0.001,
assay.name = "exprs",
var.block = NULL,
reuse = F,
out.prefix = NULL
)
obj |
object of SingleCellExperiment |
method |
method to be used, can be one of "HVG.sd", "HVG.mean.sd", "HVG.trendVar". (default: "HVG.sd") |
sd.n |
top number of genes (default 1500) |
mean.thre |
numeric; threshold for mean, used in trendVar method (default 0.1) |
fdr.thre |
numeric; threshold for fdr, used in trendVar method (default 0.001) |
assay.name |
which assay to be used (default "exprs") |
var.block |
character; specify the uninteresting factors by formula. E.g. "~patient" (default NULL) |
reuse |
logical; don't calculate if the query is already available. (default: F) |
out.prefix |
character; if not NULL, output prefix. (default: F) |
Method "sd": calculate the standard deviation of each gene and sort decreasingly, the top 'sd.n' genes are the variable genes. Method "trendVar": fit the trend between variance and mean, and decompose each gene's variance into 'tech' part(fitted value) and 'bio' part (residual value), then select genes according FDR and mean threshold. Note, when using "trendVar", will use expression data stored in "norm_exprs" slot of 'obj', no matter what 'assay.name' is.
an object of SingleCellExperiment
class
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.