ssc.clustSubsamplingClassification: Clustering with subsampling and classification

View source: R/sscClust.R

ssc.clustSubsamplingClassificationR Documentation

Clustering with subsampling and classification

Description

Clustering with subsampling and classification

Usage

ssc.clustSubsamplingClassification(
  obj,
  assay.name = "exprs",
  frac = 0.4,
  method.vgene = "HVG.sd",
  method.reduction = "iCor",
  method.clust = "kmeans",
  method.classify = "knn",
  pca.npc = NULL,
  iCor.niter = 1,
  use.proj = T,
  vis.proj = F,
  ncore = NULL,
  k.batch = 2:6,
  seed = NULL
)

Arguments

obj

object of singleCellExperiment class

assay.name

character; which assay (default: "exprs")

frac

numeric; subsample to frac of original samples. (default: 0.4)

method.vgene

character; variable gene identification method used. (default: "HVG.sd")

method.reduction

character; which dimention reduction method to be used, should be one of "iCor", "pca" and "none". (default: "iCor")

method.clust

character; clustering method to be used, should be one of "kmeans" and "hclust". (default: "kmeans")

method.classify

character; method used for classification, one of "knn" and "RF". (default: "knn")

pca.npc

integer; number of pc be used. Only for reduction method "pca". (default: NULL)

iCor.niter

integer; number of iteration of calculating the correlation. Used in reduction method "iCor". (default: 1)

use.proj

logical; whether use the projected data for classification. (default: T)

vis.proj

logical; whether get low dimensional representation for visualization. (default: F)

ncore

integer; number of cpu to use. (default: NULL)

k.batch

integer; number of clusters to be evaluated. (default: 2:6)

seed

integer; seed of random number generation. (default: NULL)

Details

The function first subsmaple the samples to the specified fraction (such 40 make labels for the subsampled samples. Using the labels, original data or projected data via the method specified in "method.reduction" will be used for trainning a classifier. Then the classifier will predict the labels of the samples not subsampled, using original data or projected data dependent on the option use.proj. The final cluster labels combining that of bath sampled and unsampled samples, will stored in the colData of the object of singleCellExperiment class, with colname in the format of {method.reduction}.{method}k{k} where {k} get value(s) from k.batch.

Value

an object of SingleCellExperiment class with cluster labels added.


Japrin/sscClust documentation built on May 23, 2024, 7:12 a.m.