bcontSurvGuniv <- function(params, respvec, VC, ps, AT = FALSE){
p1 <- p2 <- pdf1 <- pdf2 <- c.copula.be2 <- c.copula.be1 <- c.copula2.be1be2 <- NA
monP <- monP1 <- monP2 <- k <- 0; V <- list()
etad <- etas1 <- etas2 <- l.ln <- NULL
params1 <- params[1:VC$X1.d2]
params1[VC$mono.sm.pos] <- exp( params1[VC$mono.sm.pos] )
eta1 <- VC$X1%*%params1
Xd1P <- VC$Xd1%*%params1
indN <- as.numeric(Xd1P < 0)
#if(!is.null(VC$indexT)) print(table(indN))
Xd1P <- ifelse(Xd1P < VC$min.dn, VC$min.dn, Xd1P )
if( any(indN == TRUE) && !is.null(VC$indexT) ){
monP22 <- matrix(0, length(params),length(params))
for(i in 1:length(VC$pos.pb)){
V[[i]] <- as.numeric(diff(params1[ VC$pos.pb[[i]] ]) < 0)
monP22[ VC$pos.pb[[i]], VC$pos.pb[[i]] ] <- t(VC$D[[i]]*V[[i]])%*%VC$D[[i]]
}
k <- VC$my.env$k
monP2 <- k*monP22
monP <- k/2*crossprod(params, monP22)%*%params
monP1 <- k*(monP22%*%params)
VC$my.env$k <- k*2
}
##################
pd1 <- probmS(eta1, VC$margins[1], min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)
p1 <- pd1$pr
dS1eta1 <- pd1$dS
d2S1eta1 <- pd1$d2S
d3S1eta1 <- pd1$d3S
##################
l.par <- VC$weights*( VC$cens*( log(-dS1eta1) + log(Xd1P) ) + (1 - VC$cens)*log(p1) )
res <- -sum(l.par)
##################
der.par1 <- der2.par1 <- params1
der.par1[-c( VC$mono.sm.pos )] <- 1
der2.par1[-c( VC$mono.sm.pos )] <- 0
der2eta1dery1b1 <- t(t(VC$Xd1)*der.par1)
dereta1derb1 <- t(t(VC$X1)*der.par1)
##################
dl.dbe1 <- -VC$weights*(
VC$cens*( c((dS1eta1*Xd1P)^-1)*(c(d2S1eta1*Xd1P)*dereta1derb1 + c(dS1eta1)*der2eta1dery1b1) ) + (1 - VC$cens)*c(p1^-1*dS1eta1)*dereta1derb1
)
G <- colSums(dl.dbe1)
########################
########################
H <- -(
crossprod(c(VC$weights*VC$cens*(-dS1eta1^-2*d2S1eta1^2 + dS1eta1^-1*d3S1eta1))*dereta1derb1, dereta1derb1) +
diag( colSums( t( t( c(VC$weights*VC$cens*dS1eta1^-1*d2S1eta1)*VC$X1)*der2.par1 ) ) ) +
diag( colSums( t( t(VC$weights*VC$cens*c(Xd1P^-1)*VC$Xd1)*der2.par1 ) ) ) +
crossprod(VC$weights*VC$cens*c(-Xd1P^-2)*der2eta1dery1b1, der2eta1dery1b1) +
crossprod(c(VC$weights*(1 - VC$cens)*(-p1^-2*dS1eta1^2+p1^-1*d2S1eta1))*dereta1derb1, dereta1derb1) +
diag( colSums( t( t(c(VC$weights*(1 - VC$cens)*p1^-1*dS1eta1)*VC$X1)*der2.par1 ) ) )
)
########################################################################
if(VC$extra.regI == "pC") H <- regH(H, type = 1)
S.h <- ps$S.h + monP2 # hess
S.h1 <- 0.5*crossprod(params, ps$S.h)%*%params + monP # lik
S.h2 <- S.h%*%params + monP1 # grad
S.res <- res
res <- S.res + S.h1
G <- G + S.h2
H <- H + S.h
if(VC$extra.regI == "sED") H <- regH(H, type = 2)
list(value=res, gradient=G, hessian=H, S.h=S.h, S.h1=S.h1, S.h2=S.h2, indN = indN, V = V,
l=S.res, l.ln = l.ln, l.par=l.par, ps = ps, k = VC$my.env$k, monP2 = monP2, params1 = params1,
eta1=eta1,
p1 = p1, p2 = p2, pdf1 = -dS1eta1, pdf2 = pdf2,
c.copula.be2 = c.copula.be2,
c.copula.be1 = c.copula.be1,
c.copula2.be1be2 = c.copula2.be1be2,
dl.dbe1 = NULL,
dl.dbe2 = NULL,
dl.dteta.st = NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.