R/classifySingleR.R

Defines functions .classify_internals classifySingleR

Documented in classifySingleR

#' Classify cells with SingleR
#' 
#' Assign labels to each cell in a test dataset, using a pre-trained classifier combined with an iterative fine-tuning approach.
#' 
#' @param test A numeric matrix of single-cell expression values where rows are genes and columns are cells.
#'
#' Alternatively, a \linkS4class{SummarizedExperiment} object containing such a matrix.
#' @param trained A \linkS4class{List} containing the output of the \code{\link{trainSingleR}} function.
#' Alternatively, a List of Lists produced by \code{\link{trainSingleR}} for multiple references.
#' @param quantile A numeric scalar specifying the quantile of the correlation distribution to use to compute the score for each label.
#' @param fine.tune A logical scalar indicating whether fine-tuning should be performed. 
#' @param tune.thresh A numeric scalar specifying the maximum difference from the maximum correlation to use in fine-tuning.
#' @param sd.thresh Deprecated and ignored.
#' @param assay.type Integer scalar or string specifying the matrix of expression values to use if \code{test} is a \linkS4class{SummarizedExperiment}.
#' @param check.missing Logical scalar indicating whether rows should be checked for missing values.
#' If true and any missing values are found, the rows containing these values are silently removed.
#' @param prune A logical scalar indicating whether label pruning should be performed.
#' @param num.threads Integer scalar specifying the number of threads to use for classification.
#' @param BPPARAM A \linkS4class{BiocParallelParam} object specifying the parallelization scheme to use for \code{NA} scanning, when \code{check.missing=TRUE}.
#' 
#' @return A \linkS4class{DataFrame} where each row corresponds to a cell in \code{test}.
#' In the case of a single reference, this contains:
#' \itemize{
#' \item \code{scores}, a numeric matrix of correlations at the specified \code{quantile} for each label (column) in each cell (row).
#' This will contain \code{NA}s if multiple references were supplied to \code{\link{trainSingleR}}.
#' \item \code{labels}, a character vector containing the predicted label.
#' If \code{fine.tune=FALSE}, this is based only on the maximum entry in \code{scores}.
#' \item \code{delta.next}, a numeric vector containing the difference between tbe best and next-best score.
#' If \code{fine.tune=TRUE}, this is reported for scores after fine-tuning.
#' \item \code{pruned.labels}, a character vector containing the pruned labels where \dQuote{low-quality} labels are replaced with \code{NA}s.
#' Only added if \code{prune=TRUE}.
#' }
#'
#' The \code{\link{metadata}} of the DataFrame contains:
#' \itemize{
#' \item \code{common.genes}, a character vector of genes used to compute the correlations prior to fine-tuning.
#' \item \code{de.genes}, a list of list of character vectors, containing the genes used to distinguish between each pair of labels.
#' }
#'
#' If \code{trained} was generated from multiple references, 
#' the per-reference statistics are automatically combined into a single DataFrame of results using \code{\link{combineRecomputedResults}}.
#' The output of \code{combineRecomputedResults} is then directly returned.
#' 
#' @author Aaron Lun, based on the original \code{SingleR} code by Dvir Aran.
#'
#' @details
#' Consider each cell in the test set \code{test} and each label in the training set.
#' We compute Spearman's rank correlations between the test cell and all cells in the training set with the given label,
#' based on the expression profiles of the genes selected by \code{trained}.
#' The score is defined as the quantile of the distribution of correlations, as specified by \code{quantile}.
#' (Technically, we avoid explicitly computing all correlations by using a nearest neighbor search, but the resulting score is the same.)
#' After repeating this across all labels, the label with the highest score is used as the prediction for that cell.
#'
#' If \code{fine.tune=TRUE}, an additional fine-tuning step is performed for each cell to improve resolution.
#' We identify all labels with scores that are no more than \code{tune.thresh} below the maximum score.
#' These labels are used to identify a fresh set of marker genes, and the calculation of the score is repeated using only these genes.
#' The aim is to refine the choice of markers and reduce noise when distinguishing between closely related labels.
#' The best and next-best scores are reported in the output for use in diagnostics, e.g., \code{\link{pruneScores}}.
#'
#' The default \code{assay.type} is set to \code{"logcounts"} simply for consistency with \code{\link{trainSingleR}}.
#' In practice, the raw counts (for UMI data) or the transcript counts (for read count data) can also be used without normalization and log-transformation.
#' Any monotonic transformation will have no effect the calculation of the correlation values other than for some minor differences due to numerical precision.
#'
#' If \code{prune=TRUE}, label pruning is performed as described in \code{\link{pruneScores}} with default arguments.
#' This aims to remove low-quality labels that are ambiguous or correspond to misassigned cells.
#' However, the default settings can be somewhat aggressive and discard otherwise useful labels in some cases - see \code{?\link{pruneScores}} for details.
#'
#' @examples
#' # Mocking up data with log-normalized expression values:
#' ref <- .mockRefData()
#' test <- .mockTestData(ref)
#'
#' ref <- scuttle::logNormCounts(ref)
#' test <- scuttle::logNormCounts(test)
#'
#' # Setting up the training:
#' trained <- trainSingleR(ref, label=ref$label)
#'
#' # Performing the classification:
#' pred <- classifySingleR(test, trained)
#' table(predicted=pred$labels, truth=test$label)
#' 
#' @seealso
#' \code{\link{trainSingleR}}, to prepare the training set for classification.
#'
#' \code{\link{pruneScores}}, to remove low-quality labels based on the scores.
#'
#' \code{\link{combineCommonResults}}, to combine results from multiple references.
#'
#' @export
#' @importFrom BiocParallel bpnworkers
classifySingleR <- function(
    test, 
    trained, 
    quantile=0.8, 
    fine.tune=TRUE, 
    tune.thresh=0.05, 
    sd.thresh=NULL, 
    prune=TRUE, 
    assay.type="logcounts", 
    check.missing=TRUE,
    num.threads = bpnworkers(BPPARAM),
    BPPARAM=SerialParam()) 
{
    test <- .to_clean_matrix(test, assay.type, check.missing, msg="test", BPPARAM=BPPARAM)

    solo <- .is_solo(trained)
    if (solo) { 
        trained <- list(trained)
    }

    results <- lapply(trained, FUN=.classify_internals, 
        test=test, 
        quantile=quantile, 
        fine.tune=fine.tune, 
        tune.thresh=tune.thresh, 
        prune=prune, 
        num.threads=num.threads
    )

    if (solo) {
        results[[1]]
    } else {
        combineRecomputedResults(
            results, 
            test=test, 
            trained=trained, 
            check.missing=FALSE, 
            quantile=quantile
        )
    } 
}

#' @importFrom S4Vectors DataFrame metadata metadata<- I
.classify_internals <- function(test, trained, quantile, fine.tune, tune.thresh=0.05, prune=TRUE, num.threads=1) {
    m <- match(trained$markers$unique, rownames(test))
    if (anyNA(m)) {
        stop("'rownames(test)' does not contain all genes used in 'trained'")
    }

    trained <- rebuildIndex(trained, num.threads = num.threads)

    parsed <- initializeCpp(test)
    out <- run(parsed, m - 1L, trained$built, 
        quantile = quantile, 
        use_fine_tune = fine.tune, 
        fine_tune_threshold = tune.thresh, 
        nthreads = num.threads)

    colnames(out$scores) <- trained$labels$unique
    output <- DataFrame(
        scores = I(out$scores), 
        labels = trained$labels$unique[out$best + 1L],
        delta.next = out$delta,
        check.names=FALSE
    )

    if (prune) {
        output$pruned.labels <- output$labels
        output$pruned.labels[pruneScores(output)] <- NA_character_
    }

    rownames(output) <- colnames(test)
    metadata(output)$common.genes <- trained$markers$unique
    metadata(output)$de.genes <- trained$markers$full

    output
}
LTLA/SingleR documentation built on May 24, 2024, 1:28 p.m.