deepCpf1 | R Documentation |
DeepCpf1 algorithm from https://doi.org/10.1038/nbt.4061, which takes in 34 bp target sequences with/without chromatin accessibility information and returns predicted CRISPR-Cpf1 gRNA efficacy for each input sequence.
deepCpf1(extendedSequence, chrom_acc)
extendedSequence |
Sequences containing gRNA plus PAM plus flanking sequences. Each sequence should be 34 bp long as specified by http://deepcrispr.info/, i.e., 4bp before the 5' PAM, 4bp PAM, 20bp gRNA, and 6bp after 3' of gRNA. |
chrom_acc |
Optional binary variable indicating chromatin accessibility information with 1 indicating accessible and 0 not accessible. |
Having chromatin accessibility information will aid in the accuracy of the scores, but one can still get accurate scoring with only the 34 bp target sequences.
a numeric vector with prediced CRISPR-Cpf1 gRNA efficacy taking into account chromatin accessibility information if accessibility information is provided
Paul Scemama and Lihua Julie Zhu
Kim et al., Deep learning improves prediction of CRISPR–Cpf1 guide RNA activityNat Biotechnol 36, 239–241 (2018). https://doi.org/10.1038/nbt.4061
library(keras)
library(mltools)
library(dplyr)
library(data.table)
use_implementation("tensorflow")
extendedSequence <- c('GTTATTTGAGCAATGCCACTTAATAAACATGTAA',
'TGACTTTGAATGGAGTCGTGAGCGCAAGAACGCT',
'GTTATTTGAGCAATGCCACTTAATAAACATGTAA',
'TGACTTTGAATGGAGTCGTGAGCGCAAGAACGCT')
chrom_acc <- c(0,1, 0, 1)
if (interactive()) {
deepCpf1(extendedSequence = extendedSequence, chrom_acc = chrom_acc)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.