p = bio.lobster::load.environment()
la()
p$syr = 2005
p$yrs = p$syr:p$current.assessment.year
figdir = file.path(project.datadirectory("bio.lobster"),"figures","LFA2733Framework2018")
datadir = file.path(project.datadirectory("bio.lobster"),"data","products","LFA2733Framework2018")
p$lfas = c("27", "28", "29", "30", "31A", "31B", "32", "33") # specify lfas for data summary
p$subareas = c("27N","27S", "28", "29", "30", "31A", "31B", "32", "33E", "33W") # specify lfas for data summary
## Carapace Length Frequency Plots
# at Sea Sampling
CarapaceLengthFrequencies(LFAs= '27', DS='atSea', by='SEX', fn='27',Yrs = c(2011:2016),vers=2,rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '29', DS='atSea', by='SEX', fn='29',Yrs = c(2013, 2015, 2016),vers=2,rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '30', DS='atSea', by='SEX', fn='30',Yrs = c(2012),vers=2,rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '31A', DS='atSea', by='SEX', fn='31A',Yrs = c(2011:2016),vers=2,rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '31B', DS='atSea', by='SEX', fn='31B',Yrs = c(2011:2016),vers=2,rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '32', DS='atSea', by='SEX', fn='32',Yrs = c(2011:2016),vers=2,rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '33', DS='atSea', by='SEX', fn='33',Yrs = c(2012:2014),vers=2,rootdir=figdir)
p$lfas = c("27", "28", "29", "30", "31.1", "31.2", "32", "33") # specify lfas for data summary
# FSRS recruitment traps
CarapaceLengthFrequencies(LFAs= p$lfas, DS='fsrs', by="LFA", bins=seq(0,140,10),rootdir=figdir)
CarapaceLengthFrequencies(LFAs= '27', fn= '27', DS='fsrs', by="SEX", bins=seq(0,140,10), vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
CarapaceLengthFrequencies(LFAs= '29', fn= '29', DS='fsrs', by="SEX", bins=seq(0,140,10), vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
CarapaceLengthFrequencies(LFAs= '30', fn= '30', DS='fsrs', by="SEX", bins=seq(0,140,10), vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
CarapaceLengthFrequencies(LFAs= 31.1,fn= '31A', DS='fsrs', by="SEX", bins=seq(0,140,10),vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
CarapaceLengthFrequencies(LFAs= 31.2,fn= '31B', DS='fsrs', by="SEX", bins=seq(0,140,10),vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
CarapaceLengthFrequencies(LFAs= '32', fn= '32', DS='fsrs', by="SEX", bins=seq(0,140,10), vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
CarapaceLengthFrequencies(LFAs= '33', fn= '33', DS='fsrs', by="SEX", bins=seq(0,140,10), vers=2,Yrs = c(2011:2016),rootdir=figdir,ss=NULL)
logsInSeason=lobster.db("process.logs")
catchgrids.lst=list()
## Fishery Footprint - Landings
catchLevels = c(0,100000,200000,300000,400000,500000,600000,700000,800000)
yrs = 2011:2016
for(i in 1:length(yrs)){
catchgrids.lst[[i]] = lobGridPlot(subset(logsInSeason,LFA%in%p$lfas&SYEAR==yrs[i],c("LFA","GRID_NUM","TOTAL_WEIGHT_KG")),FUN=sum,lvls=catchLevels)
#pdf(file.path(figdir,paste0("FisheryFootprint",yrs[i],".pdf")))
#LobsterMap('27-33',poly.lst=catchgrids)
#title(yrs[i],line=-3,cex.main=2,adj=0.3)
#SpatialHub::contLegend('bottomright',lvls=catchgrids$lvls/1000,Cont.data=catchgrids,title="Catch (tons)",inset=0.02,cex=0.8,bg='white')
#dev.off()
}
## Fishery Footprint - CPUE
cpueLevels = c(0,0.2,0.4,0.6,0.8,0.9,1,2,3)
yrs = 2011:2016
#logsInSeason$logCPUE = log(logsInSeason$CPUE+1)
for(i in 1:length(yrs)){
cpuegrids = lobGridPlot(subset(logsInSeason,LFA%in%p$lfas&SYEAR == yrs[i],c("LFA","GRID_NUM","CPUE")),FUN=median,lvls=cpueLevels)
pdf(file.path(figdir,paste0("FishFootcpue", yrs[i],".pdf")))
LobsterMap('27-33',poly.lst=cpuegrids)
title(yrs[i],line=-3,cex.main=2,adj=0.3)
SpatialHub::contLegend('bottomright',lvls=cpuegrids$lvls,Cont.data=cpuegrids,title="CPUE (kg/TH)",inset=0.02,cex=0.8,bg='white')
dev.off()
}
## Fishery Footprint - Mean Pots Hauled
potLevels = c (0,1000,100000,200000,300000,400000,500000,600000)
yrs = 2011:2016
for(i in 1:length(yrs)){
potgrids = lobGridPlot(subset(logsInSeason,LFA%in%p$lfas&SYEAR == yrs[i],c("LFA","GRID_NUM","NUM_OF_TRAPS")),FUN=sum,lvls=potLevels)
pdf(file.path(figdir,paste0("FishFootpot", yrs[i],".pdf")))
LobsterMap('27-33',poly.lst=potgrids)
title(yrs[i],line=-3,cex.main=2,adj=0.3)
SpatialHub::contLegend('bottomright',lvls=potgrids$lvls/1000,Cont.data=potgrids,title="Pots Hauled (000s)",inset=0.02,cex=0.8,bg='white')
dev.off()
}
## Fishery Footprint - Days Fished
daysLevels = c(0,500,1000,1500,2000,2500,3000)
daysFished<-aggregate(DATE_FISHED ~ SYEAR + LFA + GRID_NUM + LICENCE_ID, data=logsInSeason,FUN= function(x) length(unique(x)))
yrs = 2011:2016
for (i in 1: length(yrs)){
daysgrids = lobGridPlot(subset(daysFished, LFA%in%p$lfas&SYEAR == yrs[i],c("LFA", "GRID_NUM", "DATE_FISHED")),FUN=sum, lvls= daysLevels)
pdf(file.path(figdir,paste0("FishFootDaysFished", yrs[i],".pdf")))
LobsterMap('27-33',poly.lst=daysgrids)
title(yrs[i],line=-3,cex.main=2,adj=0.3)
SpatialHub::contLegend('bottomright',lvls=daysgrids$lvls,Cont.data=daysgrids,title="Total Days Fished",inset=0.02,cex=0.8,bg='white')
dev.off()
}
## Fishery Footprint - Licences Fished
licenceLevels = c(0,15,30,45,60,75,90,105,120)
yrs=2011:2016
daysFished$LICENCE<-1
for(i in 1: length(yrs)){
licencegrids = lobGridPlot(subset(daysFished, LFA%in%p$lfas&SYEAR==yrs[i], c("LFA", "GRID_NUM", "LICENCE")), FUN=sum, lvls= licenceLevels)
pdf(file.path(figdir,paste0("FishFootLicenceFished", yrs[i],".pdf")))
LobsterMap('27-33', poly.lst=licencegrids)
title(yrs[i],line=-3,cex.main=2,adj=0.3)
SpatialHub::contLegend('bottomright', lvls=licencegrids$lvls, Cont.data=licencegrids, title= "Number of Licence Fished", inset =0.02,cex=0.8,bg='white')
dev.off()
}
## CPUE
p$lfas = c("27", "28", "29", "30", "31A", "31B", "32", "33") # specify lfas for data summary
p$subareas = c("27N","27S", "28", "29", "30", "31A", "31B", "32", "33E", "33W") # specify lfas for data summary
logsInSeason<-lobster.db('process.logs.redo')
logsInSeason<-lobster.db('process.logs')
cpueLFA.dat = CPUEplot(logsInSeason,lfa= p$lfas,yrs=2006:2016,graphic='R',export=T)
cpueLFA.dat = CPUEplot(logsInSeason,lfa= p$lfas,yrs=2006:2016,graphic='pdf',path=figdir)
cpueSubArea.dat = CPUEplot(logsInSeason,subarea= p$subareas,yrs=2006:2016,graphic='R')
## Commercial CPUE MOdels
mf1 = formula(logWEIGHT ~ fYEAR + DOS + TEMP + DOS * TEMP)
#mf2 = formula(logWEIGHT ~ fYEAR + DOS + TEMP)
#mf3 = formula(logWEIGHT ~ fYEAR + DOS)
#mf4 = formula(logWEIGHT ~ fYEAR + TEMP)
#mf5 = formula(logWEIGHT ~ fYEAR + DOS + TEMP + (1 | fYEAR/fAREA)) # combined
TempModelling = TempModel( annual.by.area=F)
#CPUE.data<-CPUEModelData(p,redo=T,TempModelling)
CPUE.data<-CPUEModelData(p,redo=F)
#CPUE.data$WEIGHT_KG = CPUE.data$TOTAL_WEIGHT_KG
cpueSubArea.dat = CPUEplot(CPUE.data,subarea= p$subareas,yrs=1981:2016,graphic='R')
CPUEModelResults1 = list()
#CPUEModelResults2 = list()
#CPUEModelResults3 = list()
#CPUEModelResults4 = list()
#AICs1 = c()
#AICs2 = c()
#AICs3 = c()
#AICs4 = c()
for(i in 1:length( p$subareas)){
#for(i in 1:length( p$lfas)){
mdata = subset(CPUE.data,subarea==p$subareas[i])
#mdata = subset(CPUE.data,LFA==p$lfas[i])
#CPUEModelResults1[[i]] = CPUEmodel(mf1,mdata,lfa=p$lfas[i])
CPUEModelResults1[[i]] = CPUEmodel(mf1,mdata)
#CPUEModelResults2[[i]] = CPUEmodel(mf2,mdata)
#CPUEModelResults3[[i]] = CPUEmodel(mf3,mdata)
#CPUEModelResults4[[i]] = CPUEmodel(mf4,mdata)
#AICs1[i] = CPUEModelResults1[[i]]$model$aic
#AICs2[i] = CPUEModelResults2[[i]]$model$aic
#AICs3[i] = CPUEModelResults3[[i]]$model$aic
#AICs4[i] = CPUEModelResults4[[i]]$model$aic
}
names(CPUEModelResults1) = p$subareas
#names(CPUEModelResults2) = p$subareas
#names(CPUEModelResults3) = p$subareas
#names(CPUEModelResults4) = p$subareas
#AICs = data.frame(rbind(AICs1,AICs2,AICs3,AICs4))
#names(AICs) = p$subareas
#AICs
#sweep(AICs,2,FUN='-',apply(AICs,2,min))
#CPUECombinedModelResults = CPUEmodel(mf5,CPUE.data,combined=T)
#cpue1c=CPUEModelPlot(CPUECombinedModelResults,TempModelling,combined=T,lfa = c("27N","27S", "28", "29", "30"),xlim=c(2010,2016.4),ylim=c(0,10.5),graphic='R',path=figdir,lab='1c')
#cpue2c=CPUEModelPlot(CPUECombinedModelResults,TempModelling,combined=T,lfa = c("31A", "31B", "32", "33E", "33W"),xlim=c(2010,2016.4),ylim=c(0,10.5),graphic='pdf',path=figdir,lab='2c')
#out=CPUEModelPlot(CPUEModelResults,TempModelling,lfa = c("33W","33E"),xlim=c(2014,2017.5),ylim=c(0,20),wd=15)
#out1=CPUEModelPlot(CPUEModelResults,TempModelling,lfa = c("27N","27S", "28", "29", "30"),xlim=c(2010,2016.4),ylim=c(0,10.5))
#out2=CPUEModelPlot(CPUEModelResults,TempModelling,lfa = c("31A", "31B", "32", "33E", "33W"),xlim=c(2010,2016.4),ylim=c(0,10.5))
cpue1=CPUEModelPlot(CPUEModelResults1,TempModelling,lfa = c("27N","27S", "28", "29", "30"),xlim=c(2010,2016.4),ylim=c(0,10.5),graphic='R',path=figdir,lab=1)
cpue2=CPUEModelPlot(CPUEModelResults1,TempModelling,lfa = c("31A", "31B", "32", "33E", "33W"),xlim=c(2010,2016.4),ylim=c(0,10.5),graphic='R',path=figdir,lab=2)
#cpue1=CPUEModelPlot(CPUEModelResults1,TempModelling,lfa = c("27", "28", "29", "30"),xlim=c(2010,2016.4),ylim=c(0,10.5),graphic='R',path=figdir,lab=1)
#cpue2=CPUEModelPlot(CPUEModelResults1,TempModelling,lfa = c("31A", "31B", "32", "33"),xlim=c(2010,2016.4),ylim=c(0,10.5),graphic='R',path=figdir,lab=2)
cpue=rbind(cpue1,cpue2)
write.csv(cpue1, file.path(datadir,'figure100.csv'))
write.csv(cpue2, file.path(datadir,'figure101.csv'))
cpue.annual=list()
for(i in 1:length(p$subareas)){
mu=with(subset(cpue,LFA==p$subareas[i]),tapply(mu,YEAR,mean))
mu.sd=with(subset(cpue,LFA==p$subareas[i]),tapply(mu,YEAR,sd))
cpue.annual[[i]] = data.frame(Area=p$subareas[i],Year=as.numeric(names(mu)),CPUE=mu,CPUE.sd=mu.sd)
}
cpueModel = subset(do.call("rbind",cpue.annual),Year<2017)
x11()
pdf(file.path( figdir,"CPUEmodelAnnualIndex.pdf"),8, 10)
par(mfrow=c(length(p$subareas),1),mar=c(0,0,0,0),omi=c(0.5,1,0.5,0.5),las=1)
for(i in 1:length(p$subareas)){
plot(CPUE~Year,subset(cpueModel,Area==p$subareas[i]),type='b',pch=21,bg='red',ylim=c(0,max(cpueModel$CPUE+cpueModel$CPUE.sd,na.rm=T)),xlim=c(min(cpueModel$Year),max(cpueModel$Year)),xaxt='n')
points(CPUE~YEAR,subset(cpueSubArea.dat$annual.dat,LFA==p$subareas[i]&YEAR<2017),pch=16,col='blue',cex=0.9)
lines(CPUE+CPUE.sd~Year,subset(cpueModel,Area==p$subareas[i]),lty=2)
lines(CPUE-CPUE.sd~Year,subset(cpueModel,Area==p$subareas[i]),lty=2)
axis(1,lab=F)
axis(4)
if(i==length(p$subareas))axis(1)
text(min(cpueModel$Year,na.rm=T),max(cpueModel$CPUE,na.rm=T)*.8,paste(p$subareas[i]),cex=2,pos=4)
}
mtext("CPUE (kg/TH)", 2, 3, outer = T, cex = 1,las=0)
dev.off()
cpueData2= CPUEplot(CPUE.data,lfa= p$lfas,yrs=1981:2016,graphic='R')$annual.data
save(list=c("cpueModel","cpueData"),file=file.path(project.datadirectory("bio.lobster"),"outputs","cpueIndicators.rdata"))
save(cpueData2,file=file.path(project.datadirectory("bio.lobster"),"outputs","cpueIndicators2.rdata"))
load(file.path(project.datadirectory("bio.lobster"),"outputs","cpueIndicators.rdata"))
#write.csv(cpueLFA.dat$annual.data,"CPUEannualData.csv",row.names=F)
#write.csv(na.omit(cpueLFA.dat$daily.data),"CPUEdailyData.csv",row.names=F)
write.csv(cpueModel, file.path(datadir,'figure102model.csv'))
write.csv(cpueData, file.path(datadir,'figure102data.csv'))
## FSRS MOdels
p$subareas = c("27N","27S", "28", "29", "30", "31A", "31B", "32", "33E", "33W") # specify lfas for data summary
#Base
FSRSvesday<-FSRSModelData()
FSRSvesdayComm<-FSRSModelData(trap.type="commercial")
FSRSModelResultsRecruit = list()
FSRSModelResultsShort = list()
FSRSModelResultsLegal = list()
shorts.lst = list()
legals.lst = list()
recruit.lst = list()
for(i in 1:length( p$subareas)){
mdata = subset(FSRSvesday,subarea==p$subareas[i])
FSRSModelResultsShort[[i]]=FSRSmodel(mdata, response="SHORTS",interaction=F)
pdata = FSRSModelResultsShort[[i]]$pData
pdata$Area = p$subareas[i]
shorts.lst[[i]] = pdata
FSRSModelResultsLegal[[i]]=FSRSmodel(mdata, response="LEGALS",interaction=F)
pdata = FSRSModelResultsLegal[[i]]$pData
pdata$Area = p$subareas[i]
legals.lst[[i]] = pdata
FSRSModelResultsRecruit[[i]]=FSRSmodel(mdata, response="RECRUITS",interaction=F)
pdata = FSRSModelResultsRecruit[[i]]$pData
pdata$Area = p$subareas[i]
recruit.lst[[i]] = pdata
}
names(FSRSModelResultsShort) = p$subareas
names(FSRSModelResultsLegal) = p$subareas
names(FSRSModelResultsRecruit) = p$subareas
shorts = do.call("rbind",shorts.lst)
legals = do.call("rbind",legals.lst)
recruit = do.call("rbind",recruit.lst)
library(ggplot2)
pdf(file.path( figdir,"FSRSmodelBase.pdf"),8, 10)
sp <- ggplot()
sp <- sp + geom_point(data = shorts, aes(y = mu, x = YEAR), shape = 16, size = 2)
sp <- sp + xlab("Year") + ylab("Lobsters / Trap")
sp <- sp + theme(text = element_text(size=15)) + theme_bw()
sp <- sp + geom_line(data = shorts, aes(x = YEAR, y = mu), colour = "black")
sp <- sp + geom_ribbon(data = shorts, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
sp <- sp + facet_wrap( ~Area, ncol=2,scales = "fixed")
sp
lp <- ggplot()
lp <- lp + geom_point(data = legals, aes(y = mu, x = YEAR), shape = 16, size = 2)
lp <- lp + xlab("Year") + ylab("Lobsters / Trap")
lp <- lp + theme(text = element_text(size=15)) + theme_bw()
lp <- lp + geom_line(data = legals, aes(x = YEAR, y = mu), colour = "black")
lp <- lp + geom_ribbon(data = legals, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
lp <- lp + facet_wrap( ~Area, ncol=2,scales = "fixed")
lp
rp <- ggplot()
rp <- rp + geom_point(data = recruit, aes(y = mu, x = YEAR), shape = 16, size = 2)
rp <- rp + xlab("Year") + ylab("Lobsters / Trap")
rp <- rp + theme(text = element_text(size=15)) + theme_bw()
rp <- rp + geom_line(data = recruit, aes(x = YEAR, y = mu), colour = "black")
rp <- rp + geom_ribbon(data = recruit, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
rp <- rp + facet_wrap( ~Area, ncol=2,scales = "fixed")
rp
dev.off()
#Bayes
FSRSvesday<-FSRSModelData()
#FSRSvesdayComm<-FSRSModelData(trap.type="commercial")
FSRSModelResultsRecruit = list()
FSRSModelResultsShort = list()
FSRSModelResultsLegal = list()
shorts.lst = list()
legals.lst = list()
recruit.lst = list()
for(i in 1:length( p$subareas)){
st = Sys.time()
mdata = subset(FSRSvesday,subarea==p$subareas[i])
FSRSModelResultsShort[[i]]=FSRSmodel(mdata, response="SHORTS",interaction=F,type="bayesian",iter=5000,redo=T,ptraps=1000)
pdata = FSRSModelResultsShort[[i]]$pData
pdata$Area = p$subareas[i]
shorts.lst[[i]] = pdata
FSRSModelResultsLegal[[i]]=FSRSmodel(mdata, response="LEGALS",interaction=F,type="bayesian",iter=5000,redo=T,ptraps=1000)
pdata = FSRSModelResultsLegal[[i]]$pData
pdata$Area = p$subareas[i]
legals.lst[[i]] = pdata
FSRSModelResultsRecruit[[i]]=FSRSmodel(mdata, response="RECRUITS",interaction=F,type="bayesian",iter=5000,redo=T,ptraps=1000)
pdata = FSRSModelResultsRecruit[[i]]$pData
pdata$Area = p$subareas[i]
recruit.lst[[i]] = pdata
print( Sys.time() - st)
}
names(FSRSModelResultsShort) = p$subareas
names(FSRSModelResultsLegal) = p$subareas
names(FSRSModelResultsRecruit) = p$subareas
shorts = do.call("rbind",shorts.lst)
legals = do.call("rbind",legals.lst)
recruit = do.call("rbind",recruit.lst)
library(ggplot2)
#pdf(file.path( figdir,"FSRSmodelBayesShorts.pdf"),8, 10)
png(file.path(figdir,"FSRSmodelBayesShorts.png"),width=8,height=10,units='in',res=200)
sp <- ggplot()
sp <- sp + geom_point(data = shorts, aes(y = median, x = YEAR), shape = 16, size = 2)
sp <- sp + xlab("Year") + ylab("Lobsters / Trap")
sp <- sp + theme(text = element_text(size=15)) + theme_bw()
sp <- sp + geom_line(data = shorts, aes(x = YEAR, y = median), colour = "black")
sp <- sp + geom_ribbon(data = shorts, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
sp <- sp + facet_wrap( ~Area, ncol=2,scales = "fixed")
sp
dev.off()
#pdf(file.path( figdir,"FSRSmodelBayesLegals.pdf"),8, 10)
png(file.path(figdir,"FSRSmodelBayesLegals.png"),width=8,height=10,units='in',res=200)
lp <- ggplot()
lp <- lp + geom_point(data = legals, aes(y = median, x = YEAR), shape = 16, size = 2)
lp <- lp + xlab("Year") + ylab("Lobsters / Trap")
lp <- lp + theme(text = element_text(size=15)) + theme_bw()
lp <- lp + geom_line(data = legals, aes(x = YEAR, y = median), colour = "black")
lp <- lp + geom_ribbon(data = legals, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
lp <- lp + facet_wrap( ~Area, ncol=2,scales = "fixed")
lp
dev.off()
#pdf(file.path( figdir,"FSRSmodelBayesRecruits.pdf"),8, 10)
png(file.path(figdir,"FSRSmodelBayesRecruits.png"),width=8,height=10,units='in',res=200)
rp <- ggplot()
rp <- rp + geom_point(data = recruit, aes(y = median, x = YEAR), shape = 16, size = 2)
rp <- rp + xlab("Year") + ylab("Lobsters / Trap")
rp <- rp + theme(text = element_text(size=15)) + theme_bw()
rp <- rp + geom_line(data = recruit, aes(x = YEAR, y = median), colour = "black")
rp <- rp + geom_ribbon(data = recruit, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
rp <- rp + facet_wrap( ~Area, ncol=2,scales = "fixed")
rp
dev.off()
FSRSvesdayComm = FSRSModelData(trap.type="commercial")
cssa = c("33W","33E")
FSRSModelResultsRecruitComm = list()
FSRSModelResultsShortComm = list()
FSRSModelResultsLegalComm = list()
shortsComm.lst = list()
legalsComm.lst = list()
recruitComm.lst = list()
for(i in 1:2){
st = Sys.time()
mdata = subset(FSRSvesdayComm,subarea==cssa[i])
FSRSModelResultsShortComm[[i]]=FSRSmodel(mdata, response="SHORTS",interaction=F,type="bayesian",iter=5000,redo=F,tag="Comm",ptraps=1000)
pdata = FSRSModelResultsShortComm[[i]]$pData
pdata$Area = cssa[i]
shortsComm.lst[[i]] = pdata
FSRSModelResultsLegalComm[[i]]=FSRSmodel(mdata, response="LEGALS",interaction=F,type="bayesian",iter=5000,redo=F,tag="Comm",ptraps=1000)
pdata = FSRSModelResultsLegalComm[[i]]$pData
pdata$Area = cssa[i]
legalsComm.lst[[i]] = pdata
FSRSModelResultsRecruitComm[[i]]=FSRSmodel(mdata, response="RECRUITS",interaction=F,type="bayesian",iter=5000,redo=F,tag="Comm",ptraps=1000)
pdata = FSRSModelResultsRecruitComm[[i]]$pData
pdata$Area = cssa[i]
recruitComm.lst[[i]] = pdata
print( Sys.time() - st)
}
names(FSRSModelResultsShortComm) = cssa
names(FSRSModelResultsLegalComm) = cssa
names(FSRSModelResultsRecruitComm) = cssa
shortsComm = do.call("rbind",shortsComm.lst)
legalsComm = do.call("rbind",legalsComm.lst)
recruitComm = do.call("rbind",recruitComm.lst)
write.csv(shortsComm, file.path(datadir,'figure107shorts.csv'))
write.csv(legalsComm, file.path(datadir,'figure107legals.csv'))
write.csv(recruitComm, file.path(datadir,'figure107recruits.csv'))
library(ggplot2)
#pdf(file.path( figdir,"FSRSmodelBayesCommShorts.pdf"),8, 2.5)
png(file.path(figdir,"FSRSmodelBayesCommShorts.png"),width=8,height=2.5,units='in',res=200)
sp <- ggplot()
sp <- sp + geom_point(data = shortsComm, aes(y = median, x = YEAR), shape = 16, size = 2)
sp <- sp + xlab("") + ylab("") + xlim(1999,2016)
sp <- sp + theme(text = element_text(size=15)) + theme_bw()
sp <- sp + geom_line(data = shortsComm, aes(x = YEAR, y = median), colour = "black")
sp <- sp + geom_ribbon(data = shortsComm, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
sp <- sp + facet_wrap( ~Area, ncol=2,scales = "fixed")
sp
dev.off()
#pdf(file.path( figdir,"FSRSmodelBayesCommLegals.pdf"),8, 2.5)
png(file.path(figdir,"FSRSmodelBayesCommLegals.png"),width=8,height=2.5,units='in',res=200)
lp <- ggplot()
lp <- lp + geom_point(data = legalsComm, aes(y = median, x = YEAR), shape = 16, size = 2)
lp <- lp + xlab("") + ylab("Lobsters / Trap") + xlim(1999,2016)
lp <- lp + theme(text = element_text(size=15)) + theme_bw()
lp <- lp + geom_line(data = legalsComm, aes(x = YEAR, y = median), colour = "black")
lp <- lp + geom_ribbon(data = legalsComm, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
lp <- lp + facet_wrap( ~Area, ncol=2,scales = "fixed")
lp
dev.off()
#pdf(file.path( figdir,"FSRSmodelBayesCommRecruits.pdf"),8, 2.5)
png(file.path(figdir,"FSRSmodelBayesCommRecruits.png"),width=8,height=2.5,units='in',res=200)
rp <- ggplot()
rp <- rp + geom_point(data = recruitComm, aes(y = median, x = YEAR), shape = 16, size = 2)
rp <- rp + xlab("Year") + ylab("") + xlim(1999,2016)
rp <- rp + theme(text = element_text(size=15)) + theme_bw()
rp <- rp + geom_line(data = recruitComm, aes(x = YEAR, y = median), colour = "black")
rp <- rp + geom_ribbon(data = recruitComm, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
rp <- rp + facet_wrap( ~Area, ncol=2,scales = "fixed")
rp
dev.off()
FSRSvesday<-FSRSModelData()
FSRSModelResultsRecruitLFA = list()
FSRSModelResultsShortLFA = list()
FSRSModelResultsLegalLFA = list()
shortsLFA.lst = list()
legalsLFA.lst = list()
recruitLFA.lst = list()
for(i in 1:length( p$lfas)){
#for(i in c(1,8)){
st = Sys.time()
mdata = subset(FSRSvesday,LFA==p$lfas[i])
FSRSModelResultsShortLFA[[i]]=FSRSmodel(mdata, lfa=p$lfa[i],response="SHORTS",interaction=F,type="bayesian",iter=5000,redo=F,ptraps=1000)
pdata = FSRSModelResultsShortLFA[[i]]$pData
pdata$Area = p$lfas[i]
shortsLFA.lst[[i]] = pdata
print( st <- Sys.time() - st)
FSRSModelResultsLegalLFA[[i]]=FSRSmodel(mdata, lfa=p$lfa[i], response="LEGALS",interaction=F,type="bayesian",iter=5000,redo=F,ptraps=1000)
pdata = FSRSModelResultsLegalLFA[[i]]$pData
pdata$Area = p$lfas[i]
legalsLFA.lst[[i]] = pdata
print( st <- Sys.time() - st)
FSRSModelResultsRecruitLFA[[i]]=FSRSmodel(mdata, lfa=p$lfa[i], response="RECRUITS",interaction=F,type="bayesian",iter=5000,redo=F,ptraps=1000)
pdata = FSRSModelResultsRecruitLFA[[i]]$pData
pdata$Area = p$lfas[i]
recruitLFA.lst[[i]] = pdata
print( st <- Sys.time() - st)
}
names(FSRSModelResultsShortLFA) = p$lfas
names(FSRSModelResultsLegalLFA) = p$lfas
names(FSRSModelResultsRecruitLFA) = p$lfas
shortsLFA = do.call("rbind",shortsLFA.lst)
legalsLFA = do.call("rbind",legalsLFA.lst)
recruitLFA = do.call("rbind",recruitLFA.lst)
save(list=c("shortsLFA","legalsLFA","recruitLFA"),file=file.path(project.datadirectory("bio.lobster"),"outputs","fsrsModelIndicators.rdata"))
load(file=file.path(project.datadirectory("bio.lobster"),"outputs","fsrsModelIndicators.rdata"))
write.csv(shortsLFA, file.path(datadir,'figure104.csv'))
write.csv(legalsLFA, file.path(datadir,'figure105.csv'))
write.csv(recruitLFA, file.path(datadir,'figure106.csv'))
pdf(file.path( figdir,"FSRSmodelBayesLFAShorts.pdf"),8, 2.5)
sp <- ggplot()
sp <- sp + geom_point(data = shortsLFA, aes(y = median, x = YEAR), shape = 16, size = 2)
sp <- sp + xlab("") + ylab("") + xlim(1999,2016)
sp <- sp + theme(text = element_text(size=15)) + theme_bw()
sp <- sp + geom_line(data = shortsLFA, aes(x = YEAR, y = median), colour = "black")
sp <- sp + geom_ribbon(data = shortsLFA, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
sp <- sp + facet_wrap( ~Area, ncol=2,scales = "fixed")
sp
dev.off()
pdf(file.path( figdir,"FSRSmodelBayesLFALegals.pdf"),8, 2.5)
lp <- ggplot()
lp <- lp + geom_point(data = legalsLFA, aes(y = median, x = YEAR), shape = 16, size = 2)
lp <- lp + xlab("") + ylab("Lobsters / Trap") + xlim(1999,2016)
lp <- lp + theme(text = element_text(size=15)) + theme_bw()
lp <- lp + geom_line(data = legalsLFA, aes(x = YEAR, y = median), colour = "black")
lp <- lp + geom_ribbon(data = legalsLFA, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
lp <- lp + facet_wrap( ~Area, ncol=2,scales = "fixed")
lp
dev.off()
pdf(file.path( figdir,"FSRSmodelBayesLFARecruits.pdf"),8, 2.5)
rp <- ggplot()
rp <- rp + geom_point(data = recruitLFA, aes(y = median, x = YEAR), shape = 16, size = 2)
rp <- rp + xlab("Year") + ylab("") + xlim(1999,2016)
rp <- rp + theme(text = element_text(size=15)) + theme_bw()
rp <- rp + geom_line(data = recruitLFA, aes(x = YEAR, y = median), colour = "black")
rp <- rp + geom_ribbon(data = recruitLFA, aes(x = YEAR, ymax = ub, ymin = lb ), alpha = 0.5)
rp <- rp + facet_wrap( ~Area, ncol=2,scales = "fixed")
rp
dev.off()
TempModelling = TempModel(areas = 'subarea')
TempModelPlot(TempModelling,xlim=c(1980,2017),depths=c(5,25,50),Area=c("27N","27S", "29", "30","31A","31B", "32", "33E", "33W"),graphic='png',type=1:2)
tempModel=TempModelPlot(TempModelling,xlim=c(1980,2018),depths=c(5,25,50),Area=c("27N","27S", "29", "30","31A","31B", "32", "33E", "33W"),graphic='png',type=3)
tempData=TempModelPlot(TempModelling,xlim=c(1980,2018),depths=c(5,25,50),Area=c("27N","27S", "29", "30","31A","31B", "32", "33E", "33W"),graphic='png',type=4)
save(list=c("tempModel","tempData"),file=file.path(project.datadirectory("bio.lobster"),"outputs","tempIndicators.rdata"))
tempData2=TempModelPlot(TempModelling,xlim=c(1980,2018),depths=c(5,25,50),Area=c("27", "33"),lfa=T,graphic='R',type=4)
save(tempData2,file=file.path(project.datadirectory("bio.lobster"),"outputs","tempIndicators2.rdata"))
######################## sim Molt
# som
pl = data.frame(LFA=c("LFA27-30","LFA29","LFA28,30","LFA31A","LFA32","LFA32x","LFA33","LFA33x","LFA34"),
a=c(14.266, 14.173, 16.505, 14.53521, 10.4, 18.99223, 14.23,24.87275,22.37302),
b=c(-0.1959, -0.1727, -0.2132,-0.20347, -0.112,-0.21128, -0.144,-0.25725,-0.23187))
cl=50:130
plot(cl,seq(0,1,l=length(cl)),type='n',xlab='CL',ylab='SoM')
for(i in 1:nrow(pl)){
pMat = with(pl[i,], 1/(1+(exp(a+(b*cl)))))
lines(cl,pMat,lty=i,col=i)
}
legend('bottomright',pl$LFA,lty=1:nrow(pl),col=1:nrow(pl))
# p$lfas = c("27N","27S", "28", "29", "30", "31A", "31B", "32", "33E", "33W")
#
# # carapace length bins (mm)
# TempModelling = TempModel(areas = 'subarea')
# p$TempModel = TempModelling$Model
# moltModel = moltPrModel(p,redo.dd=F)
# p$moltPrModel = moltModel # degree day growth
#
#
# plist = getSimList(p,sex=1)
#
#
# DTs = list()
# dt = c()
#
#for(l in 1:length(p$lfas)){
#
# plist[[l]]$ddoy = cumsum(plist[[l]]$dailytemps)
# for(i in 1:length(plist[[l]]$lens)) {
# dt[i] = min(which(pPrMolt(plist[[l]],cl=plist[[l]]$lens[i])>0.5))
# }
# names(dt) = plist[[l]]$lens
#
# DTs[[l]] = dt
#
#}
#
#names(DTs) = p$lfas
#
#save(DTs,file="deltaTs.rdata")
#
#
# plot(p$lens,dt2,type='l',ylim=c(0,1000),xlab='CL (mm)',ylab='days')
# lines(p$lens,dt1,lty=2)
# lines(p$lens,dt3,lty=2)
#
#
#plot(yrs,rowSums(males$finalPop),type='l')
#lines(yrs,rowSums(females$finalPop+females$finalBerried),lty=2)
#
## VB
#Linf=c(281,207)
#k=c(0.065,0.089)
#t0=c(0.76,0.42)
#age=seq(1,23,0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.