TIPC: Tumor-Immune Partitioning and Clustering
devtools::install_github('MPE-Lab/TIPC')
library(TIPC)
root_dir <- "D:/TIPC_test"
dir.create(root_dir)
clustering_subfolder_nm <- 'test'
cell_data <- TIPC::cell_data
head(cell_data)
multiple_hexLen_tessellation(cell_data = cell_data, output_dir = root_dir, hex_len_range = c(40,60),
hex_len_stepsize = 10)
multiple_hexLen_count_TIPC_cat(root_dir = root_dir)
trend_plot_hexLen(root_dir = root_dir)
trend_plot_shiftDirection(root_dir = root_dir)
for (ll in seq(40,60,by=10)){
input_dir <- file.path(root_dir,paste0("TIPC_hexLen",ll))
normalize_metrics(root_dir=input_dir)
}
for (ll in seq(40,60,by=10)){
input_dir <- file.path(root_dir,paste0("TIPC_hexLen",ll))
consensus_clustering(root_dir=input_dir)
}
trend_plot_tinyClusters(root_dir = root_dir)
for (ll in seq(40,60,by=10)){
input_dir <- file.path(root_dir,paste0("TIPC_hexLen",ll))
plot_TIPC_heatmap(root_dir = input_dir, clustering_subfolder_nm=clustering_subfolder_nm)
}
density_data <- TIPC::density_data
for (ll in seq(40,60,by=10)){
input_dir <- file.path(root_dir,paste0("TIPC_hexLen",ll))
plot_TIPC_heatmap_overlayDens(root_dir = input_dir, clustering_subfolder_nm=clustering_subfolder_nm,
density_data=density_data)
}
for (ll in seq(40,60,by=10)){
input_dir <- file.path(root_dir,paste0("TIPC_hexLen",ll))
### multivariate analysis
postTIPC_SurvivalAnalysis(root_dir = input_dir, clustering_subfolder_nm=clustering_subfolder_nm,
method = 'multivariate', surv_data = surv_data,
min_cluster_size = 5,
all_ref_check=FALSE, ref_cluster_no = 1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.