#' FSPmix_Parallel.r implements the FSPmix algorithm in a parallelised manner
#' utilising multiple CPU's (as specified by the user)
#' Input
#' dat: data.frame of features for FSPmix to search. Each column represents a feature and each row denotes an observation
#' boot.size: positive integer, size of boot strap sample
#' no.bootstrap: positive integer, number of times to bootstrap
FSPmix_Parallel<- function(dat,
boot.size = NULL, no.bootstrap=NULL){
if(is.null(boot.size)){
boot.size<- round(dim(dat)[1]*0.8) # size of bootstrap sample is 80% of participant size
}
if(is.null(no.bootstrap)){
no.bootstrap<- 100 #500 # as per manuscript (takes a while)
}
library(ggplot2)
library(reshape2)
library(dplyr)
library(mixtools)
library(grDevices)
fade <- function(colors,alpha) { # <-- to plot simulation densities
rgbcols <- col2rgb(colors)
rgb(rgbcols[1,],rgbcols[2,],rgbcols[3,],alpha/100*255,max=255)
}
## ****************************************************************
## Begin FSPmix algorithm
##
no.gene<- dim(dat)[2]
final.op <- foreach(p=1:no.gene, .errorhandling='pass') %dopar% {
library(dplyr)
library(reshape2)
library(ggplot2)
library(mixtools)
## Include all functions within the for-loop: in order to make them accessible
## for all nodes
find_MixtureThreshold_Simulation<- function(dat, boot.size,
method=c('diff', 'intersect'),
apply.all.dat = FALSE){
method <- match.arg(method)
sw = 0
full.dat<- samp.dat<- data.frame(dat=dat)
if(apply.all.dat == FALSE){
samp.dat<- sample_n(full.dat, boot.size, replace=TRUE)
}
invisible(capture.output(mix.mod<- normalmixEM(samp.dat[,1], k=2, epsilon = 0.05) ))
#str(mix.mod)
mix.threshold <- NA
if (method == 'intersect') { # intersect two gaussians
mix.threshold <- findInt(mix.mod$mu[1], mix.mod$mu[2],
mix.mod$sigma[1], mix.mod$sigma[2],
mix.mod$lambda[1], mix.mod$lambda[2])
sw = mix.threshold$sw
} else { # diff in posterior probability
# note - if speed becomes an issue I can do some things here.
post.df<- data.frame(cbind(x=mix.mod$x, mix.mod$posterior))
post.df2 <- post.df[order(post.df$x),]
post.df2$diff <- post.df2$comp.2- post.df2$comp.1
rownames(post.df2)<- 1:dim(samp.dat)[1]
# Threshold estimated via mixture model: T_e
mix.threshold <- post.df2[which.min(abs(post.df2$diff)),1]
mix.threshold
}
### Correct label switching
mix.means<- c(mix.mod$mu[1], mix.mod$mu[2])
mix.means1 = mix.means[order(mix.means)]
return(list(mix.threshold=mix.threshold$rr, boot.samp = samp.dat, mix.means = mix.means1,
sw = sw))
}
findInt <- function (m1, m2, sd1, sd2, p1=1, p2=1, filter=T) {
a <- 1/(2*sd1^2) - 1/(2*sd2^2)
b <- m2/(sd2^2) - m1/(sd1^2)
c <- m1^2 /(2*sd1^2) - m2^2 / (2*sd2^2) - log(sd2/sd1)
c <- m1^2 /(2*sd1^2) - m2^2 / (2*sd2^2) - log((sd2*p1)/(sd1*p2))
rr <- polyroot(c(c,b,a))
sw = 0
# find the one between the means
if (filter) {
# take only the Real roots
rr <- Re(rr[sapply(Im(rr), function (x) isTRUE(all.equal(x, 0)))])
rr <- rr[rr >= min(m1, m2) & rr <= max(m1, m2)]
if (length(rr) == 0) {
sw <- 1
} else {
inBetween <- rr >= min(m1, m2) & rr <= max(m1, m2)
if (sum(inBetween) == 1) # we found exactly one
rr <- rr[inBetween]
else
rr <- sample(rr, 1) # take one randomly
}
}
return(list(rr = rr, sw = sw))
}
######################################################
# Start FSPmix implementation
# prep variables to store output
rownames(dat)<- ppl<- 1:dim(dat)[1]
THRESHOLD.METHOD <- 'intersect'
SampDat_Store<- data.frame(dat = NA, boot.str = NA)
Te_mu_store<- data.frame(Thresh = rep(NA, no.bootstrap),
mu1 = rep(NA, no.bootstrap),
mu2 = rep(NA, no.bootstrap))
two.groups<- st.dev.T_e<- NA
##
## Conduct bootstrap
for(j in 1:no.bootstrap){
op<- find_MixtureThreshold_Simulation(dat = dat[,p],
boot.size = boot.size, method=THRESHOLD.METHOD)
count = 1
sw = op$sw # if sw = 0, solution found
sw
while(sw == 1 | count == 10){ # <-- means above op threw an error
op<- find_MixtureThreshold_Simulation(dat = dat[,p],
boot.size = boot.size, method=THRESHOLD.METHOD)
count = count + 1
sw = op$sw
}
Te_mu_store$Thresh[j]<- op$mix.threshold
Te_mu_store$mu1[j]<- op$mix.means[1]
Te_mu_store$mu2[j]<- op$mix.means[2]
temp.d<- op$boot.samp
temp.d$boot.str<- rep(paste("Boot.", j, sep = ""),boot.size )
SampDat_Store = rbind(SampDat_Store, temp.d)
}
##
## Criterion to determine if there are two groups in the data
mean.T_e<- mean(Te_mu_store$Thresh)
mean.T_e
sd.T_e<- sd(Te_mu_store$Thresh)
sd.T_e
mean.mu<- apply(Te_mu_store[, 2:3], 2, mean)
mean.mu
#st.dev.T_e[p]<- sd.T_e
#all.mu_Store[[p]]<- mu_Store
#all.mu_summary[[p]]<- as.data.frame(apply(Te_mu_store[, 2:3], 2, summary))
SampDat_Store<- SampDat_Store[-1,]
rownames(SampDat_Store)<- 1:dim(SampDat_Store)[1]
# two groups found?
if(mean.mu[1] < (mean.T_e - sd.T_e) & (mean.T_e + sd.T_e) < mean.mu[2]){
two.groups<- TRUE
interval.T_e<- c(mean.T_e - sd.T_e, mean.T_e + sd.T_e)
}else{
two.groups<- FALSE
interval.T_e<- c(NA,NA)
}
interval.T_e
# determined by the range of T_e
#if(mean(mu_Store[,1]) < rangeT_e[1] & rangeT_e[2] < mean(mu_Store[,2])){
# two.groups[p]<- TRUE
#}else(two.groups[p]<- FALSE)
#### plot genes --------------------------------------------
SampDat_Store$boot.str<- factor(SampDat_Store$boot.str)
#x11()
p.Feature<- ggplot(SampDat_Store, aes(x = dat, group = boot.str)) +
#geom_density(alpha = 0.1) +
geom_density(colour = fade("black",20))+
ggtitle(paste("Feature ", p,sep = "") ) +
geom_vline(xintercept = interval.T_e, colour = "blue", size=1) +
geom_vline(xintercept = mean(mean.mu[1]), colour = "gray55", size=1) +
geom_vline(xintercept = mean(mean.mu[2]), colour = "gray55", size=1) +
#annotate('text', x = Inf, y = Inf, hjust = 1.2, vjust = 2,
# label = paste("Thresh: ",round(interval.T_e[1],2), ",",
# round(interval.T_e[2],2), sep = "") ,
# size=3.5, colour = "blue") +
annotate('text', x = Inf, y = Inf, hjust = 1, vjust = 1.5,
label = paste("Thresh: (", round(interval.T_e[1],2), ",",
round(interval.T_e[2],2), ")", sep = "") ,
size=3, colour = "blue")+
theme_bw() +
annotate('text', x = Inf, y = Inf, hjust = 1, vjust = 3,
label = paste("mu1: ", round(mean.mu[1],2), sep = "") ,
size=3, colour = "gray55") +
annotate('text', x = Inf, y = Inf, hjust = 1, vjust = 4.5,
label = paste("mu2: ", round(mean.mu[2],2), sep = "") ,
size=3, colour = "gray55") +
theme(text = element_text(size=12))+
xlab("Feature value")
#x11()
#p.Feature
##
## Identify the group (A/B) for those individuals who the algorithm
## identified two groups over all genes
if(two.groups){
sub.d<- data.frame(Feature = dat[,p], ppl = ppl)
sub.d<- mutate(sub.d,
Pred = factor(ifelse(Feature < interval.T_e[1], "Pred.A",
ifelse(Feature > interval.T_e[2], "Pred.B", "Pred.C")),
levels = c("Pred.A", "Pred.B", "Pred.C")),
id = rep(colnames(dat)[p], dim(sub.d)[1]))
sub.d
# How many times did the algorithm detect 2 groups?
summ.op<-data.frame(Feature.no = p, two.groups=two.groups,
mean.Te = round(mean.T_e,2),
sd.Te = round(sd.T_e,2),
mean.mu1 = round(mean.mu[1],2),
mean.mu2 = round(mean.mu[2],2) )
}
#summ.op
###
if(two.groups){
op<- list(Classification.Pred=sub.d,
two.groups=two.groups,
summ.op = summ.op,
SampDat_Store=SampDat_Store,
Plot = p.Feature)
}else{
op<- list(two.groups=two.groups,
summ.op = NULL,
SampDat_Store=SampDat_Store,
Plot = p.Feature)
}
}
stopCluster(cl)
return(final.op)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.