View source: R/02_FilterData.R
FilterData | R Documentation |
Filter data by abundance (with user-input percentile cutoff) of missing values (with user-input percent cutoff). Missing values are commonly found in metabolomics data so the parameter currently only applies to metabolomics data.
FilterData(inputData, geneperc = 0, metabperc = 0, metabmiss = 0)
inputData |
MultiDataSet object (output of ReadData()) with gene expression, metabolite abundances, and associated meta-data |
geneperc |
percentile cutoff (0-1) for filtering genes (e.g. remove genes with mean values < 'geneperc' percentile) (default: 0) |
metabperc |
percentile cutoff (0-1) for filtering metabolites (default: no filtering of metabolites) (default:0) |
metabmiss |
missing value percent cutoff (0-1) for filtering metabolites (metabolites with > 80% missing values will be removed) (default:0) |
filtData MultiDataSet object with input data after filtering
dir <- system.file("extdata", package="IntLIM", mustWork=TRUE) csvfile <- file.path(dir, "NCItestinput.csv") inputData <- ReadData(csvfile,metabid='id',geneid='id') inputDatafilt <- FilterData(inputData,geneperc=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.