FilterData: Filter input data by abundance values (gene and metabolite...

View source: R/02_FilterData.R

FilterDataR Documentation

Filter input data by abundance values (gene and metabolite data) and number of missing values (metabolite data only).

Description

Filter data by abundance (with user-input percentile cutoff) of missing values (with user-input percent cutoff). Missing values are commonly found in metabolomics data so the parameter currently only applies to metabolomics data.

Usage

FilterData(inputData, geneperc = 0, metabperc = 0, metabmiss = 0)

Arguments

inputData

MultiDataSet object (output of ReadData()) with gene expression, metabolite abundances, and associated meta-data

geneperc

percentile cutoff (0-1) for filtering genes (e.g. remove genes with mean values < 'geneperc' percentile) (default: 0)

metabperc

percentile cutoff (0-1) for filtering metabolites (default: no filtering of metabolites) (default:0)

metabmiss

missing value percent cutoff (0-1) for filtering metabolites (metabolites with > 80% missing values will be removed) (default:0)

Value

filtData MultiDataSet object with input data after filtering

Examples

dir <- system.file("extdata", package="IntLIM", mustWork=TRUE)
csvfile <- file.path(dir, "NCItestinput.csv")
inputData <- ReadData(csvfile,metabid='id',geneid='id')
inputDatafilt <- FilterData(inputData,geneperc=0.5)

Mathelab/IntLIM documentation built on July 9, 2022, 5:10 p.m.