## Packages ----
library(dplyr)
library(reshape2)
library(nlme)
library(mvtnorm)
library(e1071)
library(knitr)
library(car)
library(lme4)
library(Matrix)
library(magic)
library(MASS)
library(MCMCpack)
library(xtable)
## Generate data ----
sim_one_group <- function(n, k, P, sigma, beta, pi = NULL, pi_par = NULL, trt = 1, missing_type, distribution){
p <- P
n_pattern <- length(pi)
covar_x <- cbind(rnorm(n), rbinom(n, 1, 0.3))
colnames(covar_x) <- paste0("x",1:k)
xmat <- cbind(rep(1,n),covar_x)
y_mat <- matrix(0, n, p)
if(distribution == "MVN")
eps <- rmvnorm(n, mean = rep(0,p), sigma = sigma)
else if(distribution == "MVT")
# eps <- rmvt(n, delta = rep(0,p), sigma = sigma, df = 3)
eps <- rmvt(n, delta = rep(0,p), sigma = sigma/5*3, df = 5)
else if(distribution == "MVGamma"){
u <- rmvnorm(n, mean = rep(0,p), sigma = cov2cor(sigma))
var_eps <- diag(sigma)
eps <- matrix(0, n, p)
for(j in 1:p){
shape_para <- 2
scale_para <- sqrt(var_eps[j]/shape_para)
eps[,j] <- qgamma(pnorm(u[,j]), shape = shape_para, scale = scale_para) - shape_para*scale_para
}
}
y_mean <- apply(beta, 1, function(x) as.vector(xmat%*%x))
y_mat <- y_mean + eps
mean_y <- colMeans(y_mat)
cov_eps <- cov(eps)
cov_y <- cov(y_mat)
db <- data.frame(y_mat)
colnames(db) <- paste0("y",1:p)
db <- cbind(db, covar_x)
db$num <- c(1:n)
db$id <- paste0(trt, "-", 1:n)
if(missing_type == "MCAR"){
db$pattern <- sample(1:p, size = n, replace = TRUE, prob = pi)
}
if(missing_type %in% c("MAR","MNAR")){
if(pi_par[3] != 0 & missing_type == "MAR"){
stop("This is not a MAR setting")
}
logit_inv <- function(x){
exp(x) / (1 + exp(x))
}
.pattern <- rep(1, n)
for(i_missing in p:2){
.score <- as.matrix(data.frame(1, db[,c(i_missing - 1,i_missing)])) %*% pi_par
.pi <- logit_inv(as.numeric(.score))
.pattern <- ifelse( rbinom(n = n, size = 1, prob = .pi) == 1, i_missing, .pattern)
}
db$pattern <- .pattern
}
db_comb <- db
db_comb$trt <- trt
for(i in 1:nrow(db_comb)){
for(j in 2:p){
if(db_comb$pattern[i] <= j & db_comb$pattern[i] > 1){
db_comb[i, j] <- NA
}
}
}
db_long <- reshape2::melt(db_comb, id.vars = c("id","pattern", "num", paste0("x", 1:k), "trt"),
variable.name = c("time") , value.name = "aval")
db_long <- db_long %>% group_by(id) %>%
mutate(
time = as.numeric(time)) %>%
ungroup()
return(list(db_comb = db_comb, db_long = db_long,
mean_y = mean_y, cov_eps = cov_eps, cov_y = cov_y))
}
sim_one_extreme <- function(n, k, P, sigma, beta, pi = NULL, pi_par = NULL, trt = 1, missing_type, distribution, outlier = "none"){
p <- P
n_pattern <- length(pi)
covar_x <- cbind(rnorm(n), rbinom(n, 1, 0.3))
colnames(covar_x) <- paste0("x",1:k)
xmat <- cbind(rep(1,n),covar_x)
y_mat <- matrix(0, n, p)
if(distribution == "MVN")
eps <- rmvnorm(n, mean = rep(0,p), sigma = sigma)
else if(distribution == "MVT")
# eps <- rmvt(n, delta = rep(0,p), sigma = sigma, df = 3)
eps <- rmvt(n, delta = rep(0,p), sigma = sigma/5*3, df = 5)
else if(distribution == "MVGamma"){
u <- rmvnorm(n, mean = rep(0,p), sigma = cov2cor(sigma))
var_eps <- diag(sigma)
eps <- matrix(0, n, p)
for(j in 1:p){
shape_para <- 2
scale_para <- sqrt(var_eps[j]/shape_para)
eps[,j] <- qgamma(pnorm(u[,j]), shape = shape_para, scale = scale_para) - shape_para*scale_para
}
}
y_mean <- apply(beta, 1, function(x) as.vector(xmat%*%x))
y_mat <- y_mean + eps
mean_y <- colMeans(y_mat)
cov_eps <- cov(eps)
cov_y <- cov(y_mat)
db <- data.frame(y_mat)
colnames(db) <- paste0("y",1:p)
db <- cbind(db, covar_x)
db$num <- c(1:n)
db$id <- paste0(trt, "-", 1:n)
if(missing_type == "MCAR"){
db$pattern <- sample(1:p, size = n, replace = TRUE, prob = pi)
}
if(missing_type %in% c("MAR","MNAR")){
if(pi_par[3] != 0 & missing_type == "MAR"){
stop("This is not a MAR setting")
}
logit_inv <- function(x){
exp(x) / (1 + exp(x))
}
.pattern <- rep(1, n)
for(i_missing in p:2){
.score <- as.matrix(data.frame(1, db[,c(i_missing - 1,i_missing)])) %*% pi_par
.pi <- logit_inv(as.numeric(.score))
.pattern <- ifelse( rbinom(n = n, size = 1, prob = .pi) == 1, i_missing, .pattern)
}
db$pattern <- .pattern
}
db_comb <- db
db_comb$trt <- trt
for(i in 1:nrow(db_comb)){
for(j in 2:p){
if(db_comb$pattern[i] <= j & db_comb$pattern[i] > 1){
db_comb[i, j] <- NA
}
}
}
if(outlier != "none"){
ind_max <- which(db_comb[,p] == max(db_comb[,p], na.rm = TRUE))
if(outlier == "Type 1"){
db_comb[ind_max, p] <- 3*db_comb[ind_max, p]
}
if(outlier == "Type 2"){
db_comb[ind_max, 2:p] <- 3*db_comb[ind_max, 2:p]
}
}
db_long <- reshape2::melt(db_comb, id.vars = c("id","pattern", "num", paste0("x", 1:k), "trt"),
variable.name = c("time") , value.name = "aval")
db_long <- db_long %>% group_by(id) %>%
mutate(
time = as.numeric(time),
trt = trt) %>%
ungroup()
return(list(db_comb = db_comb, db_long = db_long))
}
## j2r imputation (proper MI) ----
j2r_imp <- function(db_comb, db_long, M){
n1 <- length(which(db_comb$trt == 1))
n2 <- length(which(db_comb$trt == 2))
p <- length(unique(db_long$time))
obs_pi <- 1 - c(sum(is.na(db_comb[,p] & db_comb$trt == 1))/n1,
sum(is.na(db_comb[,p] & db_comb$trt == 2))/n2)
names_dep_var <- colnames(db_comb[, c(1:p)])
names_covar <- colnames(db_comb[, c((p+1):(p+k))])
db_comb_ctl <- db_comb[which(db_comb$trt == 1),]
db_comb_trt <- db_comb[which(db_comb$trt == 2),]
db_long_ctl <- db_long[which(db_long$trt == 1),]
db_long_trt <- db_long[which(db_long$trt == 2),]
db_avaiable <- na.omit(db_long)
db_avaiable_ctl <- na.omit(db_long_ctl)
db_avaiable_trt <- na.omit(db_long_trt)
child_ctl <- factor(db_avaiable_ctl$id)
child_trt <- factor(db_avaiable_trt$id)
fit_lmer_ctl <- lmer(aval ~ x1 + x2 + factor(time) +
x1:factor(time) + x2:factor(time) +
(0 + factor(time)|id),
control = lmerControl(check.nobs.vs.nRE = "ignore",
check.conv.grad = "ignore",
check.conv.hess = "ignore",
check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)),
data = db_avaiable_ctl)
fit_lmer_trt <- lmer(aval ~ x1 + x2 + factor(time) +
x1:factor(time) + x2:factor(time) +
(0 + factor(time)|id),
control = lmerControl(check.nobs.vs.nRE = "ignore",
check.conv.grad = "ignore",
check.conv.hess = "ignore",
check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)),
data = db_avaiable_trt)
# may take more time using lsmeans()
# lsmeans(fit_lmer_ctl, list(pairwise ~ factor(time)), df = nrow(db_long_ctl) - 1, adjust = NULL)
beta_lmer_ctl <- fixef(fit_lmer_ctl)
cov_beta_ctl <- vcov(fit_lmer_ctl, full = TRUE, ranpar = "var")
cov_beta_ctl <- data.matrix(cov_beta_ctl)
# draw beta
beta_mi_ctl <- rmvnorm(M, mean = beta_lmer_ctl, sigma = cov_beta_ctl)
beta_transform_ctl <- apply(beta_mi_ctl, 1, function(x) c(x[1:3],
x[1:3] + c(x[4], x[8], x[12]),
x[1:3] + c(x[5], x[9], x[13]),
x[1:3] + c(x[6], x[10], x[14]),
x[1:3] + c(x[7], x[11], x[15])))
beta_lmer_trt <- fixef(fit_lmer_trt)
cov_beta_trt <- vcov(fit_lmer_trt, full = TRUE, ranpar = "var")
cov_beta_trt <- data.matrix(cov_beta_trt)
# draw beta
beta_mi_trt <- rmvnorm(M, mean = beta_lmer_trt, sigma = cov_beta_trt)
beta_transform_trt <- apply(beta_mi_trt, 1, function(x) c(x[1:3],
x[1:3] + c(x[4], x[8], x[12]),
x[1:3] + c(x[5], x[9], x[13]),
x[1:3] + c(x[6], x[10], x[14]),
x[1:3] + c(x[7], x[11], x[15])))
# random effect covariance matrix D
vc.a <- VarCorr(fit_lmer_ctl)
vc.da <- as.data.frame(vc.a,order="lower.tri")
var_D_ctl <- matrix(c(vc.da[1:5,4],
vc.da[2,4], vc.da[6:9,4],
vc.da[3,4], vc.da[7,4], vc.da[10:12,4],
vc.da[4,4], vc.da[8,4], vc.da[11,4],vc.da[13:14,4],
vc.da[5,4], vc.da[9,4], vc.da[12,4],vc.da[14,4], vc.da[15,4]
),p,p,byrow=TRUE)
var_R <- summary(fit_lmer_ctl)$sigma^2*diag(p)
Z_i <- diag(p)
V_ctl <- var_R + t(Z_i)%*%var_D_ctl%*%Z_i
db_imp <- db_comb
imp_fn <- function(beta){
beta_imp_ctl <- matrix(beta[1:15], 1+k, p)
beta_imp_trt <- matrix(beta[16:30], 1+k, p)
V_mi_ctl <- rwish(p+1, V_ctl)/(p+1)
control_term1 <- as.vector(beta_imp_ctl[1,])
control_term2 <- beta_imp_ctl[-1,]
trt_term1 <- as.vector(beta_imp_trt[1,])
trt_term2 <- beta_imp_trt[-1,]
imp_value_ctl <- db_comb_ctl[,p]
imp_value_trt <- db_comb_trt[,p]
sigma_pattern <- c(0)
mean_ctl <- rep(0, n1)
mean_trt <- rep(0, n2)
for(j in 2:p){
sigma_mo <- V_mi_ctl[j:p, 1:(j-1)]%*%solve(V_mi_ctl[1:(j-1), 1:(j-1)])
sigma_pattern[j-1] <- (V_mi_ctl[j:p, j:p] - sigma_mo%*%V_mi_ctl[1:(j-1),j:p])[p-j+1, p-j+1]
if(length(which(db_comb_ctl$pattern == j)) > 0){
pattern_mat_ctl <- db_comb_ctl[which(db_comb_ctl$pattern == j), ]
mu_miss_ctl <- control_term1[j:p] + apply(pattern_mat_ctl[,(p+1):(p+k)], 1, function(x) apply(matrix(control_term2[,j:p], k, (p-j)+1), 2, function(y) sum(x*y)))
mu_obs_ctl <- control_term1[1:(j-1)] + apply(pattern_mat_ctl[,(p+1):(p+k)], 1, function(x) apply(matrix(control_term2[,1:(j-1)], k, j-1), 2, function(y) sum(x*y)))
mean_pattern_ctl <- mu_miss_ctl + apply(matrix(data.matrix(pattern_mat_ctl[,1:(j-1)] - t(mu_obs_ctl)), nrow(pattern_mat_ctl), j-1), 1, function(x) sigma_mo%*%x)
mean_pattern_ctl <- matrix(mean_pattern_ctl, p-j+1, nrow(pattern_mat_ctl))
mean_ctl[which(db_comb_ctl$pattern == j)] <- mean_pattern_ctl[p-j+1,]
imp_value_ctl[which(db_comb_ctl$pattern == j)] <- sapply(mean_pattern_ctl[p-j+1,], function(x) rnorm(1, x, sqrt(sigma_pattern[j-1])))
}
if(length(which(db_comb_trt$pattern == j)) > 0){
pattern_mat_trt <- db_comb_trt[which(db_comb_trt$pattern == j), ]
mu_miss_trt <- control_term1[j:p] + apply(pattern_mat_trt[,(p+1):(p+k)], 1, function(x) apply(matrix(control_term2[,j:p], k, (p-j)+1), 2, function(y) sum(x*y)))
mu_obs_trt <- trt_term1[1:(j-1)] + apply(pattern_mat_trt[,(p+1):(p+k)], 1, function(x) apply(matrix(trt_term2[,1:(j-1)], k, j-1), 2, function(y) sum(x*y)))
mean_pattern_trt <- mu_miss_trt + apply(matrix(data.matrix(pattern_mat_trt[,1:(j-1)] - t(mu_obs_trt)), nrow(pattern_mat_trt), j-1), 1, function(x) sigma_mo%*%x)
mean_pattern_trt <- matrix(mean_pattern_trt, p-j+1, nrow(pattern_mat_trt))
mean_trt[which(db_comb_trt$pattern == j)] <- mean_pattern_trt[p-j+1,]
imp_value_trt[which(db_comb_trt$pattern == j)] <- sapply(mean_pattern_trt[p-j+1,], function(x) rnorm(1, x, sqrt(sigma_pattern[j-1])))
}
}
imp_value <- c(imp_value_ctl, imp_value_trt)
return(imp_value)
}
imp_value <- apply(rbind(beta_transform_ctl, beta_transform_trt), 2, imp_fn)
# change from baseline
base_value <- c(db_comb_ctl[,1], db_comb_trt[,1])
chg_imp <- t(apply(imp_value, 2, function(x) x - base_value))
chg_imp_ctl <- chg_imp[,1:n1]
chg_imp_trt <- chg_imp[,(n1+1):(n1+n2)]
return(chg_imp = chg_imp)
}
rubin_est <- function(db_comb, db_long, chg_imp, M, fit_model){
n1 <- length(which(db_comb$trt == 1))
n2 <- length(which(db_comb$trt == 2))
p <- length(unique(db_long$time))
obs_pi <- 1 - c(sum(is.na(db_comb[,p] & db_comb$trt == 1))/n1,
sum(is.na(db_comb[,p] & db_comb$trt == 2))/n2)
names_dep_var <- colnames(db_comb[, 1:p])
names_covar <- colnames(db_comb[, (p+1):(p+k)])
db_comb_ctl <- db_comb[which(db_comb$trt == 1),]
db_comb_trt <- db_comb[which(db_comb$trt == 2),]
chg_imp_ctl <- chg_imp[,1:n1]
chg_imp_trt <- chg_imp[,(n1+1):(n1+n2)]
## point estimates
# (1) mean estimator
# (i) simple average
theta1 <- mean(chg_imp_ctl)
theta2 <- mean(chg_imp_trt)
theta_diff <- theta2 - theta1
mean_est <- c(theta1, theta2, theta_diff)
# Rubin's estimate
wm_ctl <- mean(apply(chg_imp_ctl, 1, var)/n1)
bm_ctl <- var(apply(chg_imp_ctl, 1, mean))
var_rubin_ctl <- wm_ctl + (1+1/M)*bm_ctl
wm_trt <- mean(apply(chg_imp_trt, 1, var)/n2)
bm_trt <- var(apply(chg_imp_trt, 1, mean))
var_rubin_trt <- wm_trt + (1+1/M)*bm_trt
wm_diff <- wm_ctl + wm_trt
bm_diff <- var(apply(chg_imp_trt, 1, mean) - apply(chg_imp_ctl, 1, mean))
var_rubin_diff <- wm_diff + (1+1/M)*bm_diff
var_mean_rubin <- c(var_rubin_ctl, var_rubin_trt, var_rubin_diff)
# (ii) robust regression for each group
db_reg_ctl <- db_comb_ctl[,c(1,(p+1):(p+k))]
db_reg_trt <- db_comb_trt[,c(1,(p+1):(p+k))]
adj_mean <- colMeans(db_comb[,(p+1):(p+k)])
coef1_mat <- matrix(c(1, adj_mean), 1, k+1)
coef2_mat <- matrix(c(1, adj_mean), 1, k+1)
var_xbar <- apply(db_comb[,(p+1):(p+k)], 2, var)/(n1+n2)
rr_fn <- function(y){
z1 <- y[1:n1]
z2 <- y[(n1+1):(n1+n2)]
db_reg_ctl$wt <- z1
db_reg_trt$wt <- z2
# using Huber weight
# fit_ctl <- rlm(wt ~ x1 + x2, data = db_reg_ctl)
fit_ctl <- fit_model(wt ~ x1 + x2, data = db_reg_ctl)
# using bisquare weight
# fit_ctl <- rlm(wt ~ x1 + x2, data = db_reg_ctl,
# psi = psi.bisquare)
beta_ctl <- coef(fit_ctl)
# fit_trt <- rlm(wt ~ x1 + x2, data = db_reg_trt)
fit_trt <- fit_model(wt ~ x1 + x2, data = db_reg_trt)
beta_trt <- coef(fit_trt)
theta1 <- beta_ctl[1] + sum(beta_ctl[2:(k+1)]*adj_mean)
theta2 <- beta_trt[1] + sum(beta_trt[2:(k+1)]*adj_mean)
theta_diff <- theta2 - theta1
mean_est <- c(theta1, theta2, theta_diff)
cov_beta_ctl <- vcov(fit_ctl)
cov_beta_trt <- vcov(fit_trt)
var_theta1 <- as.numeric(coef1_mat%*%cov_beta_ctl%*%t(coef1_mat)) +
sum(beta_ctl[2:(k+1)]^2*var_xbar)
var_theta2 <- as.numeric(coef2_mat%*%cov_beta_trt%*%t(coef2_mat)) +
sum(beta_trt[2:(k+1)]^2*var_xbar)
var_diff <- as.numeric(coef1_mat%*%cov_beta_ctl%*%t(coef1_mat)) +
as.numeric(coef2_mat%*%cov_beta_trt%*%t(coef2_mat)) +
sum((beta_trt[2:(k+1)] - beta_ctl[2:(k+1)])^2*var_xbar)
var_est <- c(var_theta1, var_theta2, var_diff)
return(c(mean_est, var_est))
}
mi_reg_mat <- apply(chg_imp, 1, rr_fn)
reg_est <- rowMeans(mi_reg_mat)[1:3]
# Rubin's estimate
wm_ctl <- rowMeans(mi_reg_mat)[4]
bm_ctl <- var(mi_reg_mat[1,])
var_rubin_ctl <- wm_ctl + (1+1/M)*bm_ctl
wm_trt <- rowMeans(mi_reg_mat)[5]
bm_trt <- var(mi_reg_mat[2,])
var_rubin_trt <- wm_trt + (1+1/M)*bm_trt
wm_diff <- rowMeans(mi_reg_mat)[6]
bm_diff <- var(mi_reg_mat[3,])
var_rubin_diff <- wm_diff + (1+1/M)*bm_diff
var_reg_rubin <- c(var_rubin_ctl, var_rubin_trt, var_rubin_diff)
# (iii) robust regression for the whole data
db_reg <- db_comb[,c("x1", "x2", "trt")]
coef1_mat <- matrix(c(1, adj_mean, 0), 1, k+2)
coef2_mat <- matrix(c(1, adj_mean, 1), 1, k+2)
coef3_mat <- coef2_mat - coef1_mat
var_xbar <- apply(db_comb[,(p+1):(p+k)], 2, var)/(n1+n2)
rr2_fn <- function(y){
z <- y
db_reg$wt <- z
# (1)
# using Huber weight
# fit_rr <- rlm(wt ~ x1 + x2 + factor(trt), data = db_reg)
fit_rr <- fit_model(wt ~ x1 + x2 + factor(trt), data = db_reg)
# using bisquare weight
# fit_ctl <- rlm(wt ~ x1 + x2, data = db_reg_ctl,
# psi = psi.bisquare)
beta_rr <- coef(fit_rr)
theta1 <- beta_rr[1] + sum(beta_rr[2:(k+1)]*adj_mean)
theta2 <- beta_rr[1] + sum(beta_rr[2:(k+1)]*adj_mean) + beta_rr[k+2]
theta_diff <- theta2 - theta1
mean_est <- c(theta1, theta2, theta_diff)
cov_beta_rr <- vcov(fit_rr)
var_theta1 <- as.numeric(coef1_mat%*%cov_beta_rr%*%t(coef1_mat)) +
sum(beta_rr[2:(k+1)]^2*var_xbar)
var_theta2 <- as.numeric(coef2_mat%*%cov_beta_rr%*%t(coef2_mat)) +
sum(beta_rr[2:(k+1)]^2*var_xbar)
var_diff <- as.numeric(coef3_mat%*%cov_beta_rr%*%t(coef3_mat))
var_est <- c(var_theta1, var_theta2, var_diff)
return(c(mean_est, var_est))
}
mi_reg2_mat <- apply(chg_imp, 1, rr2_fn)
reg2_est <- rowMeans(mi_reg2_mat)[1:3]
# Rubin's estimate
wm_ctl <- rowMeans(mi_reg2_mat)[4]
bm_ctl <- var(mi_reg2_mat[1,])
var_rubin_ctl <- wm_ctl + (1+1/M)*bm_ctl
wm_trt <- rowMeans(mi_reg2_mat)[5]
bm_trt <- var(mi_reg2_mat[2,])
var_rubin_trt <- wm_trt + (1+1/M)*bm_trt
wm_diff <- rowMeans(mi_reg2_mat)[6]
bm_diff <- var(mi_reg2_mat[3,])
var_rubin_diff <- wm_diff + (1+1/M)*bm_diff
var_reg2_rubin <- c(var_rubin_ctl, var_rubin_trt, var_rubin_diff)
return(list(mean_est = mean_est,
var_mean_rubin = var_mean_rubin,
reg_est = reg_est,
var_reg_rubin = var_reg_rubin,
reg2_est = reg2_est,
var_reg2_rubin = var_reg2_rubin))
}
rubin_mean <- function(db_comb, db_long, chg_imp, fit_model){
n1 <- length(which(db_comb$trt == 1))
n2 <- length(which(db_comb$trt == 2))
p <- length(unique(db_long$time))
obs_pi <- 1 - c(sum(is.na(db_comb[,p] & db_comb$trt == 1))/n1,
sum(is.na(db_comb[,p] & db_comb$trt == 2))/n2)
names_dep_var <- colnames(db_comb[, c(1:p)])
names_covar <- colnames(db_comb[, c((p+1):(p+k))])
db_comb_ctl <- db_comb[which(db_comb$trt == 1),]
db_comb_trt <- db_comb[which(db_comb$trt == 2),]
chg_imp_ctl <- chg_imp[,1:n1]
chg_imp_trt <- chg_imp[,(n1+1):(n1+n2)]
## point estimates
# (1) mean estimator
# (i) simple average
theta1 <- mean(chg_imp_ctl)
theta2 <- mean(chg_imp_trt)
theta_diff <- theta2 - theta1
mean_est <- c(theta1, theta2, theta_diff)
# (ii) robust regression for each group
db_reg_ctl <- db_comb_ctl[,(p+1):(p+k)]
db_reg_trt <- db_comb_trt[,(p+1):(p+k)]
adj_mean <- colMeans(db_comb[,(p+1):(p+k)])
rr_fn <- function(y){
z1 <- y[1:n1]
z2 <- y[(n1+1):(n1+n2)]
db_reg_ctl$wt <- z1
db_reg_trt$wt <- z2
# using Huber weight
fit_ctl <- fit_model(wt ~ x1 + x2, data = db_reg_ctl)
# using bisquare weight
# fit_ctl <- rlm(wt ~ x1 + x2, data = db_reg_ctl,
# psi = psi.bisquare)
beta_ctl <- coef(fit_ctl)
fit_trt <- fit_model(wt ~ x1 + x2, data = db_reg_trt)
beta_trt <- coef(fit_trt)
theta1 <- beta_ctl[1] + sum(beta_ctl[2:(k+1)]*adj_mean)
theta2 <- beta_trt[1] + sum(beta_trt[2:(k+1)]*adj_mean)
theta_diff <- theta2 - theta1
mean_est <- c(theta1, theta2, theta_diff)
return(mean_est)
}
mi_reg_mat <- apply(chg_imp, 1, rr_fn)
reg_est <- rowMeans(mi_reg_mat)
# (iii) robust regression for the whole data
db_reg <- db_comb[,c("x1", "x2", "trt")]
coef1_mat <- matrix(c(1, adj_mean, 0), 1, k+2)
coef2_mat <- matrix(c(1, adj_mean, 1), 1, k+2)
coef3_mat <- coef2_mat - coef1_mat
var_xbar <- apply(db_comb[,(p+1):(p+k)], 2, var)/(n1+n2)
rr2_fn <- function(y){
z <- y
db_reg$wt <- z
# (1)
# using Huber weight
# fit_rr <- rlm(wt ~ x1 + x2 + factor(trt), data = db_reg)
fit_rr <- fit_model(wt ~ x1 + x2 + factor(trt), data = db_reg)
beta_rr <- coef(fit_rr)
theta1 <- beta_rr[1] + sum(beta_rr[2:(k+1)]*adj_mean)
theta2 <- beta_rr[1] + sum(beta_rr[2:(k+1)]*adj_mean) + beta_rr[k+2]
theta_diff <- theta2 - theta1
mean_est <- c(theta1, theta2, theta_diff)
return(mean_est)
}
mi_reg2_mat <- apply(chg_imp, 1, rr2_fn)
reg2_est <- rowMeans(mi_reg2_mat)
return(list(mean_est = mean_est,
reg_est = reg_est,
reg2_est = reg2_est))
}
nonpara_mi_fn <- function(db_comb, db_long, M, B, fit_model){
db_comb_ctl <- db_comb[which(db_comb$trt == 1),]
db_comb_trt <- db_comb[which(db_comb$trt == 2),]
mean_boot <- matrix(0, 3, B)
reg_boot <- matrix(0, 3, B)
reg2_boot <- matrix(0, 3, B)
for(b in 1:B){
set.seed(b)
id_boot <- sample(unique(db_comb$id), replace = TRUE)
data_boot <- data.frame(id_new = 1:length(id_boot), id = id_boot)
data_boot <- merge(data_boot, db_comb, all.x = TRUE)
data_boot <- cbind(data_boot[,-c(1:2)], data_boot[,1:2])
colnames(data_boot) <- c(colnames(data_boot)[1:(ncol(data_boot)-2)],"id_old", "id")
data_long <- data.frame(id_new = 1:length(id_boot), id = id_boot)
data_long <- merge(data_long, db_long, all.x = TRUE)
colnames(data_long) <- c("id_old", "id", colnames(data_long)[3:ncol(data_long)])
chg_imp <- j2r_imp(data_boot, data_long, M)
mi_res <- rubin_mean(data_boot, data_long, chg_imp, fit_model)
mean_boot[,b] <- mi_res$mean_est
reg_boot[,b] <- mi_res$reg_est
reg2_boot[,b] <- mi_res$reg2_est
}
var_mean_boot <- apply(mean_boot, 1, var)
var_reg_boot <- apply(reg_boot, 1, var)
var_reg2_boot <- apply(reg2_boot, 1, var)
return(list(var_mean_boot = var_mean_boot,
var_reg_boot = var_reg_boot,
var_reg2_boot = var_reg2_boot))
}
## Simulate function ----
main<-function(seed, case){
#the main fucntion to run for one simulation
set.seed(seed)
if(missing_type == "MCAR"){
tmp1 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi = Pi_ctl, trt = 1, missing_type = missing_type, distribution = distribution)
# tmp1 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi = Pi_ctl, trt = 1, missing_type = missing_type, distribution = distribution)
tmp2 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi = Pi_trt, trt = 2, missing_type = missing_type, distribution = distribution)
}
if(missing_type %in% c("MAR", "MNAR")){
if(case == "Case0"){
tmp1 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution)
tmp2 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution)
}
if(case == "Case1"){
tmp1 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution, outlier = "Type 1")
tmp2 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution, outlier = "Type 1")
}
if(case == "Case2"){
tmp1 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution)
tmp2 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution, outlier = "Type 1")
}
if(case == "Case3"){
tmp1 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution, outlier = "Type 1")
tmp2 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution)
}
if(case == "Case4"){
tmp1 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution, outlier = "Type 2")
tmp2 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution, outlier = "Type 2")
}
if(case == "Case5"){
tmp1 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution)
tmp2 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution, outlier = "Type 2")
}
if(case == "Case6"){
tmp1 <- sim_one_extreme(n = N, k = k, P = p, sigma = Sigma, beta = beta_ctl, pi_par = phi_ctl, trt = 1, missing_type = missing_type, distribution = distribution, outlier = "Type 2")
tmp2 <- sim_one_group(n = N, k = k, P = p, sigma = Sigma, beta = beta_trt, pi_par = phi_trt, trt = 2, missing_type = missing_type, distribution = distribution)
}
}
db_comb <- rbind(tmp1[[1]], tmp2[[1]]) # to fit lm
db_long <- rbind(tmp1[[2]], tmp2[[2]]) # to fit mmrm
## multiple imputation
# chg_imp <- rr_seq_imp(db_comb, db_long, M)
chg_imp <- j2r_imp(db_comb, db_long, M)
mi_res <- rubin_est(db_comb, db_long, chg_imp, M, fit_model)
minp_res <- nonpara_mi_fn(db_comb, db_long, M, B, fit_model)
mean_mi <- mi_res$mean_est
reg_mi <- mi_res$reg_est
reg2_mi <- mi_res$reg2_est
var_rubin_mean <- mi_res$var_mean_rubin
var_rubin_reg <- mi_res$var_reg_rubin
var_rubin_reg2 <- mi_res$var_reg2_rubin
var_boot_mean <- minp_res$var_mean_boot
var_boot_reg <- minp_res$var_reg_boot
var_boot_reg2 <- minp_res$var_reg2_boot
return(list(mean_mi = mean_mi,
reg_mi = reg_mi,
reg2_mi = reg2_mi,
var_rubin_mean = var_rubin_mean,
var_rubin_reg = var_rubin_reg,
var_rubin_reg2 = var_rubin_reg2,
var_boot_mean = var_boot_mean,
var_boot_reg = var_boot_reg,
var_boot_reg2 = var_boot_reg2))
}
## Data ----
N <- 100
k <- 2 # dimension of covariates (omit intercept)
p <- 5 # number of visits
# mu_beta_ctl <- c(0, 1, 2, 3, 4)
# mu_beta_trt <- c(0, 1.3, 2.8, 4, 5.5)
mu_beta_ctl <- c(0, 1, 2, 3, 4)
mu_beta_trt <- c(0, 1.3, 2.3, 3.5, 4.8)
set.seed(123)
beta_ctl <- rbind(rnorm(k+1, mu_beta_ctl[1], 1), rnorm(k+1,mu_beta_ctl[2], 1),
rnorm(k+1, mu_beta_ctl[3], 1), rnorm(k+1,mu_beta_ctl[4], 1),
rnorm(k+1, mu_beta_ctl[5], 1))
beta_trt <- rbind(rnorm(k+1, mu_beta_trt[1], 1), rnorm(k+1,mu_beta_trt[2], 1),
rnorm(k+1, mu_beta_trt[3], 1), rnorm(k+1,mu_beta_trt[4], 1),
rnorm(k+1, mu_beta_trt[5], 1))
beta_trt[1,] <- beta_ctl[1,]
## Under H0
# beta_trt <- beta_ctl
sd <- c(2.0, 1.8, 2.0, 2.1, 2.2)
corr <- matrix(
c(1, 0.6, 0.3, 0.2, 0.1,
0.6, 1, 0.7, 0.5, 0.2,
0.3, 0.7, 1, 0.6, 0.4,
0.2, 0.5, 0.6, 1, 0.5,
0.1, 0.2, 0.4, 0.5, 1), 5, 5)
Sigma <- diag(sd) %*% corr %*% diag(sd)
## Missing types
# (1) MCAR
# missing_type = "MCAR"
# (i) case 1
# Pi_ctl <- c(80, rep(5,4)) / 100
# Pi_trt <- c(80, rep(5,4)) / 100
# (ii) case 2
# Pi_ctl <- c(80, rep(5,4)) / 100
# Pi_trt <- c(70, 9, rep(7,3)) / 100
# (iii) case 3
# Pi_ctl <- c(70, 9, rep(7,3)) / 100
# Pi_trt <- c(80, rep(5,4)) / 100
# (iv) case 4
# Pi_ctl <- c(60, rep(10,4)) / 100
# Pi_trt <- c(60, rep(10,4)) / 100
# (2) MAR
missing_type = "MAR"
## (i) ctl > trt, approx 0.8, 0.7
# phi_ctl <- c(-3.2, 0.2, 0)
# phi_trt <- c(-3.5, 0.2, 0)
## (ii) ctl = trt, approx 0.8
phi_ctl <- c(-3.5, 0.2, 0)
phi_trt <- c(-3.6, 0.2, 0)
# ## (iii) trt > ctl, approxiamte 0.7, 0.8
# phi_ctl <- c(-2.8, 0.2, 0)
# phi_trt <- c(-4.0, 0.2, 0)
## Under H0, ctl = trt, approx 0.8
# phi_ctl <- c(-3.5, 0.2, 0)
# phi_trt <- c(-3.5, 0.2, 0)
## Distribution
distribution = "MVN"
# distribution = "MVT"
# distribution = "MVGamma"
## True value ----
if(distribution == "MVN"){
# true_mean <- c(5.526485, 6.604056, 1.077571) # MVN
true_mean <- c(5.526485, 5.526485, 0)
}
if(distribution == "MVT"){
true_mean <- c(5.526554, 6.607928, 1.081374) # MVT
# true_mean <- c(5.526554, 5.526554, 0)
}
if(distribution == "MVGamma"){
true_mean <- c(5.526218, 6.603291, 1.077073) # MVGamma
# true_mean <- c(5.526218, 5.526218, 0)
}
## Analysis model ----
fit_model <- lm
# fit_model <- MASS::rlm
# fit_model <- Rfit::rfit
## Simulation results ----
M <- 10
B <- 100
# Get task id for each simulation job (not run in Rstudio Serve)
task_id <- as.integer(Sys.getenv("SGE_TASK_ID"))
res <- main(seed = task_id, case = "Case0")
# Save all the objects into i.Rdata
save(res, file = paste0(task_id, ".Rdata"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.