Description Usage Arguments Examples
Simulate data under a specified model
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | sim_data(
  sentinel_lon,
  sentinel_lat,
  sentinel_radius = 0.1,
  K = 3,
  source_weights = NULL,
  source_lon_min = -0.2,
  source_lon_max = 0,
  source_lat_min = 51.45,
  source_lat_max = 51.55,
  source_lon = NULL,
  source_lat = NULL,
  sigma_model = "single",
  sigma_mean = 1,
  sigma_var = 0.1,
  expected_popsize = 100,
  data_type = "counts",
  test_rate = 5,
  N = 150,
  dispersal_model = "normal"
)
 | 
| sentinel_lon | vector giving longitudes of sentinel sites. | 
| sentinel_lat | vector giving latitudes of sentinel sites. | 
| sentinel_radius | observation radius of the sentinel site (km). | 
| K | the number of sources. | 
| source_weights | the proportion of events coming from each source | 
| source_lon_min | minimum limit on source longitudes. | 
| source_lon_max | maximum limit on source longitudes. | 
| source_lat_min | minimum limit on source latitudes. | 
| source_lat_max | maximum limit on source latitudes. | 
| source_lon | manually define source longitude positions. If  | 
| source_lat | manually define source latitude positions. If  | 
| sigma_model | set as "single" to use the same dispersal distance for all sources, or "independent" to use an independently drawn dispersal distance for each source. | 
| sigma_mean | the prior mean of the parameter sigma (km). | 
| sigma_var | the prior variance of the parameter sigma (km). Set to zero to use a fixed distance. | 
| expected_popsize | the expected total number of observations (observed and unobserved) in the study area. | 
| data_type | what model we wish to simulate under - a poisson, binomial or vanilla finite mixture corresponding to "counts", "prevalence" or "point-pattern" respectively | 
| test_rate | The rate of the Poisson distribution with which we draw the number of individuals tested at each sentinel site | 
| N | the number of events to distributed under a point-pattern model | 
| dispersal_model | distribute points via a "normal", "cauchy" or "laplace" model | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # State the number of sources to be generated
K_sim <- 3
# Create some sentinel site locations
sentinal_lon <- seq(-0.2, 0.0, l=11)
sentinal_lat <- seq(51.45, 51.55, l=11)
sentinal_grid <- expand.grid(sentinal_lon, sentinal_lat)
names(sentinal_grid) <- c("longitude", "latitude")
# Set their sentinel radius (this constant times true sigma)
sentinel_radius <- 0.25
# sim count data under a Poisson model
sim1 <- sim_data(sentinal_grid$longitude,
                sentinal_grid$latitude,
                sigma_model = "single",
                sigma_mean = 1,
                sigma_var = 0.5,
                sentinel_radius = sentinel_radius,
                K = K_sim,
                expected_popsize = 300)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.