RunDiffusion: Run Diffusion map

View source: R/RunDiffusion.R

RunDiffusionR Documentation

Run Diffusion map

Description

Run Diffusion map

Usage

RunDiffusion(
  object,
  dims = 1:5,
  reduction = "pca",
  features = NULL,
  max.dim = 3L,
  sigma = "local",
  distance = "euclidean",
  reduction.name = "dm",
  reduction.key = "DM_",
  ...
)

Arguments

object

Seurat object

dims

number of dimensions

reduction

reductionm method. Defaults to pca

features

vector of gene names

max.dim

maximum dimensions

sigma

Diffusion scale parameter of the Gaussian kernel. One of 'local', 'global', a (numeric) global sigma or a Sigmas object. When choosing 'global', a global sigma will be calculated using find_sigmas. (Optional. default: 'local') A larger sigma might be necessary if the eigenvalues can not be found because of a singularity in the matrix

distance

Distance measurement method applied to data or a distance matrix/dist. For the allowed values, see find_knn. If this is a sparseMatrix, zeros are interpreted as "not a close neighbors", which allows the use of kNN-sparsified matrices (see the return value of find_knn.

reduction.name

Dimension Reduction method

reduction.key

Dimension Reduction key


Morriseylab/scExtras documentation built on July 10, 2024, 6:41 a.m.