View source: R/dependentData_armaEstBipM.R
arma_est_bip_m | R Documentation |
The function arma_est_bip_m(x,p,q) comuptes the BIP M-estimation step for BIP MM estimates of the ARMA model parameters. It can also be used as a stand-alone M-estimator.
arma_est_bip_m(x, p, q, beta_hat_s, a_sc_final)
x: |
data (observations/measurements/signal) |
p: |
autoregressive order |
q: |
moving-average order |
beta_hat_s: |
BIP S-estimate |
a_sc_final: |
M scale estimate of residuals of BIP S-estimate |
ar_coeffs: vector of BIP-AR(p) MM-estimates
ma_coeffs: vector of BIP-MA(q) MM-estimates
File location: dependentData_armaEstBipM.R
"Robust Statistics for Signal Processing" Zoubir, A.M. and Koivunen, V. and Ollila, E. and Muma, M. Cambridge University Press, 2018.
"Bounded Influence Propagation τ-Estimation: A New Robust Method for ARMA Model Estimation." Muma, M. and Zoubir, A.M. IEEE Transactions on Signal Processing, 65(7), 1712-1727, 2017.
library(signal) library(zeallot) library(pracma) N <- 500 a <- rnorm(N) p <- 1 q <- 0 x <- signal::filter(1, c(1, -0.8), a) beta_s <- arma_est_bip_s(x, p, q, tolX = 1e-8) beta <- c(beta_s$ar_coeffs, beta_s$ma_coeffs) arma_est_bip_m(x, p, q, beta, beta_s$inno_scale)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.