hublasso | R Documentation |
hublasso computes the M-Lasso estimate for a given penalty parameter using Huber's loss function
hublasso(y, X, c = NULL, lambda, b0, sig0, reltol = 1e-05, printitn = 0, iter_max = 500)
y: |
Numeric data vector of size N x 1 (output,respones) |
X: |
Numeric data matrix of size N x p (inputs,predictors,features). Each row represents one observation, and each column represents one predictor |
lambda: |
positive penalty parameter value |
b0: |
numeric initial start of the regression vector |
sig0: |
numeric positive scalar, initial scale estimate. |
c: |
Threshold constant of Huber's loss function |
reltol: |
Convergence threshold. Terminate when successive estimates differ in L2 norm by a rel. amount less than reltol. Default is 1.0e-5 |
iter_max: |
int, default = 500. maximum number of iterations |
printitn: |
print iteration number (default = 0, no printing) |
b0: regression coefficient vector estimate
sig0: estimate of the scale
psires: pseudoresiduals
File in Regression.R
hublasso(rnorm(5), matrix(rnorm(5)), lambda = 0.5, b0 = rnorm(5), sig0 = 0.3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.