View source: R/regression_enet.R
enet | R Documentation |
enet computes the elastic net estimator using the cyclic co-ordinate descent (CCD) algorithm.
enet(y, X, beta, lambda, alpha = 1, printitn = 0, itermax = 1000)
y |
: (numeric) data vector of size N x 1 (output, respones) if the intercept is in the model, then y needs to be centered. |
X |
: (numeric) data matrix of size N x p (input, features) Columns are assumed to be standardized (i.e., norm(X(:,j))=1) as well as centered (if intercept is in the model). |
beta |
: (numeric) regression vector for initial start for CCD algorithm |
lambda |
: (numeric) a postive penalty parameter value |
alpha |
: (numeric) elastic net tuning parameter in the range [0,1]. If not given then use alpha = 1 (Lasso) |
printitn: |
print iteration number (default = 0, no printing) |
beta : (numeric) the regression coefficient vector
iter : (numeric) # of iterations
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.