View source: R/regression_ladlasso.R
ladlasso | R Documentation |
ladlasso computes the LAD-Lasso regression estimates for given complex- or real-valued data. If number of predictors, p, is larger than one, then IRWLS algorithm is used, otherwise a weighted median algorithm (N > 200) or elemental fits (N<200).
ladlasso(y, X, lambda, intcpt = T, b0 = NULL, reltol = 1e-08, printitn = 0, iter_max = 2000)
y |
numeric response N x 1 vector (real/complex) |
X |
sparse matrix, numeric feature N x p matrix (real/complex) |
lambda |
numeric, non-negative penalty parameter |
intcpt |
numeric optional initial start of the regression vector for IRWLS algorithm. If not given, we use LSE (when p>1). |
b0 |
numeric optional initial start of the regression vector for IRWLS algorithm. If not given, we use LSE (when p>1). |
reltol |
Convergence threshold for IRWLS. Terminate when successive estimates differ in L2 norm by a rel. amount less than reltol. |
printitn |
print iteration number (default = 0, no printing) |
iter_max |
number of iterations |
b1: numeric, the regression coefficient vector of size N
iter: integer, number of iterations
File location: regression_ladlasso.R
ladlasso(rnorm(8), matrix(rnorm(8*3)*5+1, 8, 3), 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.