View source: R/regression_hublassopath.R
hublassopath | R Documentation |
hublassopath computes the M-Lasso regularization path (over grid of penalty parameter values) using Huber's loss function.
hublassopath(y, X, c = NULL, L = 120, eps = 10^-3, intcpt = T, reltol = 1e-05, printitn = 0)
L |
: Positive integer, the number of lambda values EN/Lasso uses. Default is L=120. |
reltol |
: Convergence threshold for IRWLS. Terminate when successive estimates differ in L2 norm by a rel. amount less than reltol. default: 1e-05 |
y: |
Numeric data vector of size N x 1 (output, respones) |
X: |
Numeric data matrix of size N x p. Each row represents one observation, and each column represents one predictor (feature) columns are standardized to unit length. |
c: |
Threshold constant of Huber's loss function (optional; otherwise use default value) |
intcpt: |
Logical (true/false) flag to indicate if intercept is in the regression mode. Default is true. |
eps: |
Positive scalar, the ratio of the smallest to the largest Lambda value in the grid. Default is eps = 10^-3. |
printitn: |
print iteration number (default = 0, no printing) |
B : Fitted M-Lasso regression coefficients, a p-by-(L+1) matrix, where p is the number of predictors (columns) in X, and L is the number of Lambda values.
B0 : estimates values of intercepts
stats : structure with following fields:
Lambda = lambda parameters in ascending order
sigma = estimates of the scale (a (L+1) x 1 vector)
gBIC = generalized Bayesian information criterion (gBIC) value for each lambda parameter on the grid.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.