ekf_toa: ekf_toa

View source: R/robustFiltering_ekfToA.R

ekf_toaR Documentation

ekf_toa

Description

EKF for tracking with time-of-arrival (:= ToA) estimates

Usage

ekf_toa(r_ges, theta_init, BS, parameter = NULL)

Arguments

r_ges

: measured distances as a M x N matrix

theta_init

: initial state estimate

BS

: base station positions

parameter

:

Value

th_hat : state estimates

P_min : apriori covariance

P : aposteriors covariance

Note

File location: robustFiltering_ekfToA.R

References

"Robust Statistics for Signal Processing" Zoubir, A.M. and Koivunen, V. and Ollila, E. and Muma, M. Cambridge University Press, 2018.

"Robust Tracking and Geolocation for Wireless Networks in NLOS Environments." Hammes, U., Wolsztynski, E., and Zoubir, A.M. IEEE Journal on Selected Topics in Signal Processing, 3(5), 889-901, 2009.

Examples

library(zeallot)
library(Matrix)
library(MASS)
library(pracma)
library(tensorA)
library(Rrobustsp)


data("robfilexamp")
data("ekf_parameter")

ekf <- tmp$ekf
rekf <- tmp$rekf

names(ekf) <- dimnames(ekf)[[1]]
names(rekf)<- dimnames(rekf)[[1]]

theta_init <- tmp$theta.init

rekf$break.cond <- rekf$'break'[1,1]
rekf$c1 <- rekf$c1[1,1]
rekf$c2 <- rekf$c2[1,1]
rekf$var.est <- rekf$var.est[1,1]
rekf$dim <- rekf$dim[1,1]
rekf$max.iters <- rekf$max.iters[1, 1]
rekf$x1 <- rekf$x1[1,1]

# %<-% is the unpacking assignment from library zeallot
c(ekf_th, p_th, pm_th, param_th) %<-% ekf_toa(tmp$measureddistances, theta_init, tmp$BS, ekf)

Mufabo/Rrobustsp documentation built on June 11, 2022, 10:41 p.m.