# what is in the CATCH.nc file?
############# preliminaries for testing ###################
library(here)
library(stringr)
library(magrittr)
library(dplyr)
library(tidyr)
library(ggplot2)
atlmod <- here("data-raw/simulated-data/config/NOBA_sacc38Config.R")
source(atlmod)
nc_catch <- paste0(scenario.name, 'CATCH.nc')
#nc_catch <- paste0(scenario.name, 'TOTCATCH.nc')
stepperyr <- 5
dir <- d.name
select_variable <- "Catch"
input_select_variable <- select_variable
file.nc <- file.path(dir, nc_catch)
file_fish <- fisheries.file
select_groups_name <- c("Long_rough_dab",
"Green_halibut",
"Mackerel",
"Haddock",
"Saithe",
"Redfish",
"Blue_whiting",
"Norwegian_ssh",
"North_atl_cod",
"Polar_cod",
"Capelin")
fgs <- atlantisom::load_fgs(dir = d.name, file_fgs = functional.groups.file)
# Get the boundary boxes
allboxes <- atlantisom::load_box(dir = d.name, file_bgm = box.file)
bboxes <- atlantisom::get_boundary(allboxes)
############# code to load catch by fleet in tons ###################
# Load ATLANTIS output!
at_out <- RNetCDF::open.nc(con = file.nc)
on.exit(RNetCDF::close.nc(at_out))
# Get info from netcdf file! (Filestructure and all variable names)
var_names_ncdf <- sapply(seq_len(RNetCDF::file.inq.nc(at_out)$nvars - 1),
function(x) RNetCDF::var.inq.nc(at_out, x)$name)
n_timesteps <- RNetCDF::dim.inq.nc(at_out, 0)$length
n_boxes <- RNetCDF::dim.inq.nc(at_out, 1)$length
n_layers <- RNetCDF::dim.inq.nc(at_out, 2)$length
# To get what I hope is catch output in tons,
# keep variable names with CODES instead of species names
# get code matching species name and use as select groups
select_groups <- fgs$Code[which(fgs$Name %in% select_groups_name)]
# and _FC with a number corresponding to the fishery in the Fisheries.csv
if(select_variable %in% c("Catch", "Discard")){
#input_select_variable <- select_variable
#read in fleet names
fleetnames <- atlantisom::load_fisheries(dir = dir, file_fish = file_fish)
#select_variable <- concatenate select_variable "_" each fleet name
svfish <- c()
for(i in select_variable){
sv <-paste0(i, "_FC", fleetnames$Index)
svfish <- c(svfish, sv)
}
select_variable <- svfish
}
search <- list()
for (i in seq_along(select_groups)) {
search[[i]] <- c(
unlist(paste0(select_groups[i], select_variable)), # GroupVariable
unlist(paste(select_groups[i], select_variable,
sep = "_")) # Group_Variable
)
search[[i]] <- search[[i]][is.element(search[[i]], var_names_ncdf)]
search[[i]] <- unique(search[[i]])
}
search_clean <- do.call(c, search)
# If the combination of select_groups and select_variable ends up not being found.
if (length(search_clean) == 0) return(0)
at_data <- lapply(search_clean, RNetCDF::var.get.nc, ncfile = at_out)
# Get final species and number of ageclasses per species
final_species <- select_groups[sapply(
lapply(select_groups, grepl, x = search_clean), any)]
# # Get final fleets for full age structure fishery output--wrong order
# if(input_select_variable %in% c("Catch", "Discard")){
# final_fleet <- fleetnames$Code[sapply(
# lapply(select_variable, grepl, x = search_clean), any)]
# }
num_layers <- RNetCDF::var.get.nc(ncfile = at_out, variable = "numlayers")[, 1]
# add sediment layer!
num_layers <- num_layers + ifelse(num_layers == 0, 0, 1)
# Create an array of layerids.
# Every entry in the array indicates if a layer is present (= 1) or not (= 0).
# Boxes without layers (= islands) have only 0s as id,
# used later on to remove data from non-existent layers!
# By default output should be 0 in those layers.
# Layers in boundary boxes are set to 0 if bboxes is anything other than NULL!
# Applying a boolean array to an array results in a vector!
for (i in seq_along(num_layers)) {
if (i == 1) layerid <- array(dim = c(n_layers, n_boxes))
if (num_layers[i] == 0) {
layerid[, i] <- 0
} else {
if (!is.null(bboxes) & is.element((i - 1), bboxes)) {
layerid[, i] <- 0
} else {
layerid[, i] <- c(rep(0, times = n_layers - num_layers[i]),
rep(1, times = num_layers[i]))
}
}
}
# Create vectors for polygons and layers
# Each vector has the length equal to one time-step
# All data from islands and non-existent layers is removed
# Therefore the length of these
# vectors is equal for each extracted variable
boxes <- 0:(n_boxes - 1)
# Remove islands and boundary boxes
island_ids <- num_layers == 0
if (!is.null(bboxes)) {
boundary_ids <- is.element(boxes, bboxes)
island_ids <- island_ids | boundary_ids
}
boxes <- boxes[!island_ids]
num_layers <- num_layers[!island_ids]
polygons <- rep(boxes, times = num_layers)
layers <- sapply(num_layers[num_layers != 0] - 2,
function(x) c(seq(x, from = 0, by = 1), n_layers - 1))
if (any(sapply(layers, length) != num_layers[num_layers != 0])) {
stop("Number of layers incorrect.")
}
layers <- do.call(c, layers)
if (length(polygons) != length(layers)) {
stop("Number of polygons and layers do not match.")
}
# In the following section the data is transformed to a long dataframe
# I haven't found any solution to vectorize the creation of the dataframe
# columns (species, age, polygons,...)
# when data from 2d and 3d arrays
# (e.g. select_variable = "N" all biomasspools are only present in the
# sediment layer.) are read in simultaneously.
# Therefore the current "messy" solution splits the data
# in 2 subpopulations: 2d-data and 3d-data
at_data3d <- at_data[which(sapply(at_data, function(x) length(dim(x))) == 3)]
at_data2d <- at_data[which(sapply(at_data, function(x) length(dim(x))) == 2)]
int_fs <- final_species
int_fa <- rep(1, length(final_species))
if(input_select_variable %in% c("Catch", "Discard")){
# how many unique fleets per select_group in search_clean?
# lookup of species and fleet names
splitfleets <- search_clean %>%
stringr::str_replace(paste0("_",input_select_variable,"_FC"), "-")
sp_fleet <- as.data.frame(unique(splitfleets)) %>%
dplyr::rename(spfleet = "unique(splitfleets)") %>%
tidyr::separate(spfleet, c("species", "fleet"), sep = "-")
# lookup of number of fleets per species
sp_nfleet <- as.data.frame(table(sp_fleet$species)) %>%
dplyr::rename(species = Var1, nfleet = Freq)
final_fleet <- sp_nfleet[match(final_species, sp_nfleet$species),]
# for indexing fleets
int_ff <- final_fleet$nfleet
}
# 3d should not apply here
# if (length(at_data3d) >= 1) {
# # Remove biomasspools if selected variable is "N"!
# if (input_select_variable == "N") {
# int_fs <- final_species[!is.element(final_species, bps)]
# int_fa <- final_agecl[!is.element(final_species, bps)]
# # Note this only works if age-structured vertebrates have 10 ageclasses
# # there is no "N" output in annage files so has no impact
# int_fa[int_fa == 10] <- 1
# }
# for (i in seq_along(at_data3d)) {# for loop over all variables
# if (i == 1) result3d <- list()
# for (j in 1:n_timesteps) {# loop over timesteps
# if (j == 1) values <- array(dim = c(length(layers), n_timesteps))
# values[, j] <- at_data3d[[i]][,, j][layerid == 1]
# }
# result3d[[i]] <- as.vector(values)
# }
# result3d <- data.frame(
# species = unlist(sapply(
# X = mapply(FUN = rep, x = int_fs, each = int_fa, SIMPLIFY = FALSE,
# USE.NAMES = FALSE),
# FUN = rep, each = length(layers) * n_timesteps, simplify = FALSE)),
# agecl = unlist(sapply(
# X = sapply(X = int_fa, FUN = seq, from = 1, by = 1, simplify = FALSE,
# USE.NAMES = FALSE),
# FUN = rep, each = length(layers) * n_timesteps, simplify = FALSE)),
# polygon = unlist(sapply(
# X = n_timesteps * int_fa, FUN = rep, x = polygons, simplify = F,
# USE.NAMES = FALSE)),
# layer = unlist(sapply(
# X = n_timesteps * int_fa, FUN = rep, x = layers, simplify = FALSE,
# USE.NAMES = FALSE)),
# time = unlist(sapply(
# X = int_fa, FUN = rep, x = rep(0:(n_timesteps - 1), each = length(layers)),
# simplify = FALSE, USE.NAMES = FALSE)),
# atoutput = do.call(c, result3d),
# stringsAsFactors = FALSE)
# }
if (length(at_data2d) >= 1) {
# # Only select biomasspools if selected variable is "N"!
# if (input_select_variable == "N") {
# int_fs <- final_species[is.element(final_species, bps)]
# int_fa <- final_agecl[is.element(final_species, bps)]
# }
# # age-structured invert groups are combined in ncdf file!
# if (input_select_variable == "Grazing") int_fa <- 1
for (i in seq_along(at_data2d)) {# for loop over all variables!
if (i == 1) result2d <- list()
for (j in 1:n_timesteps) {# loop over timesteps
if (j == 1) values <- array(dim = c(length(boxes), n_timesteps))
values[, j] <- at_data2d[[i]][, j][boxes + 1]
}
result2d[[i]] <- as.vector(values)
}
# Order of the data in value column = "atoutput".
# 1. species --> rep each with the number of
# ageclasses * fleets and n_timesteps * boxes
# 2. age --> rep each (1:maxage for each species) with n_timesteps * boxes
# 3. timestep --> rep each timestep (1:n_timesteps)
# with the number of boxes and final_agecl
# (num ages per species)
# 4. polygon --> rep boxes times n_timesteps * final_agecl
# (num ages per species)
# 5. fleet -->
# if(input_select_variable %in% c("Nums", "Weight")){
#
# result2d <- data.frame(species = unlist(sapply(
# X = mapply(FUN = rep, x = int_fs, each = int_fa, SIMPLIFY = FALSE,
# USE.NAMES = FALSE),
# FUN = rep, each = length(boxes) * n_timesteps, simplify = FALSE)),
# agecl = unlist(sapply(X = sapply(X = int_fa, FUN = seq, from = 1,
# by = 1, simplify = FALSE, USE.NAMES = FALSE),
# FUN = rep, each = length(boxes) * n_timesteps, simplify = FALSE)),
# polygon = unlist(sapply(X = n_timesteps * int_fa,
# FUN = rep, x = boxes, simplify = FALSE, USE.NAMES = FALSE)),
# time = unlist(sapply(X = int_fa, FUN = rep, x = rep(0:(n_timesteps - 1),
# each = length(boxes)), simplify = FALSE, USE.NAMES = FALSE)),
# atoutput = do.call(c, result2d),
# stringsAsFactors = F)
# if (select_variable == "N") result2d$layer <- n_layers - 1
# }
#should now work properly for multiple fleets
if(input_select_variable %in% c("Catch", "Discard")){
result2d <- data.frame(species = unlist(sapply(X = mapply(FUN = rep, x = int_fs,
each = (int_fa * int_ff),SIMPLIFY = FALSE,USE.NAMES = FALSE),
FUN = rep, each = length(boxes) * n_timesteps, simplify = FALSE)),
agecl = unlist(sapply(X = sapply(X = rep(int_fa, int_ff), FUN = seq, from = 1,
by = 1, simplify = FALSE, USE.NAMES = FALSE),
FUN = rep, each = (length(boxes) * n_timesteps), simplify = FALSE)),
polygon = unlist(sapply(X = n_timesteps * int_fa * int_ff,
FUN = rep, x = boxes, simplify = FALSE, USE.NAMES = FALSE)),
fleet = unlist(sapply(X = mapply(FUN = rep, x = sp_fleet$fleet,
each = (rep(int_fa, int_ff)),SIMPLIFY = FALSE,USE.NAMES = FALSE),
FUN = rep, each = (length(boxes) * n_timesteps), simplify = FALSE)),
time = unlist(sapply(X = int_fa * int_ff , FUN = rep, x = rep(0:(n_timesteps - 1),
each = length(boxes)), simplify = FALSE, USE.NAMES = FALSE)),
atoutput = do.call(c, result2d),
stringsAsFactors = F)
#if (select_variable == "N") result2d$layer <- n_layers - 1
}
}
# Combine dataframes if necessary!
# if (all(sapply(lapply(at_data, dim), length) == 3) & input_select_variable != "N") {
# result <- result3d
# }
if (all(sapply(lapply(at_data, dim), length) == 2) & input_select_variable != "N") {
result <- result2d
}
if (input_select_variable == "N") {
if (length(at_data2d) >= 1 & length(at_data3d) == 0) result <- result2d
if (length(at_data2d) == 0 & length(at_data3d) >= 1) result <- result3d
if (length(at_data2d) >= 1 & length(at_data3d) >= 1) {
result <- rbind(result2d, result3d)
}
}
##### aggregate over polygons to fleets #######
aggcatchtons <- result %>%
dplyr::select(-agecl) %>%
dplyr::group_by(species, fleet, time) %>%
dplyr::summarise(totcatch = sum(atoutput)) %>%
dplyr::mutate(year = ceiling(time/stepperyr))
# compare annual catch in tons to CATCH.txt output
yearcatchtons <- aggcatchtons %>%
dplyr::group_by(species, year) %>%
dplyr::summarise(yeartot = sum(totcatch))
txtCatchtons <- atlantisom::load_catch(d.name, catch.file, fgs) %>%
dplyr::filter(species %in% select_groups_name) %>%
dplyr::mutate(year = time/365) %>%
dplyr::left_join(dplyr::select(fgs, Code, Name), by = c("species" = "Name"))
comparetons <- txtCatchtons %>%
dplyr::left_join(yearcatchtons, by = c("Code" = "species", "year" = "year")) %>%
ggplot2::ggplot() +
geom_line(aes(year, atoutput)) +
geom_point(aes(year, yeartot), color = "blue", alpha = 0.2) +
facet_wrap(~species, scales="free_y")
# looks like a match!
comparetons
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.