#' Poisson lognormal mixture model
#'
#' Fit the mixture variants of the Poisson lognormal with a variational algorithm. Use the (g)lm syntax for model specification (covariates, offsets).
#'
#' @param formula an object of class "formula": a symbolic description of the model to be fitted.
#' @param data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which lm is called.
#' @param subset an optional vector specifying a subset of observations to be used in the fitting process.
#' @param clusters a vector of integer containing the successive number of clusters (or components) to be considered
#' @param control a list-like structure for controlling the optimization, with default generated by [PLNmixture_param()]. See the associated documentation
#' for details.
#'
#' @return an R6 object with class [`PLNmixturefamily`], which contains
#' a collection of models with class [`PLNmixturefit`]
#'
#' @rdname PLNmixture
#' @examples
#' ## Use future to dispatch the computations on 2 workers
#' \dontrun{
#' future::plan("multisession", workers = 2)
#' }
#'
#' data(trichoptera)
#' trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
#' myMixtures <- PLNmixture(Abundance ~ 1 + offset(log(Offset)), clusters = 1:4, data = trichoptera,
#' control = PLNmixture_param(smoothing = 'none'))
#'
#' # Shut down parallel workers
#' \dontrun{
#' future::plan("sequential")
#' }
#' @seealso The classes [`PLNmixturefamily`], [`PLNmixturefit`] and [PLNmixture_param()]
#' @importFrom stats model.frame model.matrix model.response model.offset update.formula
#' @export
PLNmixture <- function(formula, data, subset, clusters = 1:5, control = PLNmixture_param()) {
## Temporary test for deprecated use of list()
if (!inherits(control, "PLNmodels_param"))
stop("We now use the function PLNmixture_param() to generate the list of parameters that controls the fit:
replace 'list(my_arg = xx)' by PLN_param(my_arg = xx) and see the documentation of PLNmixture_param().")
# remove the intercept term if any (will be used to deal with group means)
the_call <- match.call(expand.dots = FALSE)
the_call$formula <- update.formula(formula(the_call), ~ . -1)
## extract the data matrices and weights
args <- extract_model(the_call, parent.frame())
## Instantiate the collection of PLN models
if (control$trace > 0) cat("\n Initialization...")
if (control$trace > 0) cat("\n\n Adjusting", length(clusters), "PLN mixture models.\n")
myPLN <- PLNmixturefamily$new(clusters, args$Y, args$X, args$O, args$formula, control)
## Now adjust the PLN models
myPLN$optimize(control$config_optim)
## Smoothing to avoid local minima
if (control$smoothing != "none" & control$trace > 0) cat("\n\n Smoothing PLN mixture models.\n")
myPLN$smooth(control)
## Post-treatments: Compute pseudo-R2, rearrange criteria and the visualization for PCA
if (control$trace > 0) cat("\n Post-treatments")
myPLN$postTreatment(control$config_post, control$config_optim)
if (control$trace > 0) cat("\n DONE!\n")
myPLN
}
#' Control of a PLNmixture fit
#'
#' Helper to define list of parameters to control the PLNmixture fit. All arguments have defaults.
#'
#' @param backend optimization back used, either "nlopt" or "torch". Default is "nlopt"
#' @param covariance character setting the model for the covariance matrices of the mixture components. Either "full", "diagonal" or "spherical". Default is "spherical".
#' @param smoothing The smoothing to apply. Either, 'none', forward', 'backward' or 'both'. Default is 'both'.
#' @param init_cl The initial clustering to apply. Either, 'kmeans', CAH' or a user defined clustering given as a list of clusterings, the size of which is equal to the number of clusters considered. Default is 'kmeans'.
#' @param config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See details
#' @param config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
#' @param trace a integer for verbosity.
#' @param inception Set up the parameters initialization: by default, the model is initialized with a multivariate linear model applied on
#' log-transformed data, and with the same formula as the one provided by the user. However, the user can provide a PLNfit (typically obtained from a previous fit),
#' which sometimes speeds up the inference.
#'
#' @return list of parameters configuring the fit.
#' @details See [PLN_param()] for a full description of the generic optimization parameters. PLNmixture_param() also has additional parameters controlling the optimization due the inner-outer loop structure of the optimizer:
#' * "ftol_out" outer solver stops when an optimization step changes the objective function by less than xtol multiplied by the absolute value of the parameter. Default is 1e-6
#' * "maxit_out" outer solver stops when the number of iteration exceeds maxit_out. Default is 50
#' * "it_smoothing" number of the iterations of the smoothing procedure. Default is 1.
#'
#' @seealso [PLN_param()]
#' @export
PLNmixture_param <- function(
backend = "nlopt" ,
trace = 1 ,
covariance = "spherical",
init_cl = "kmeans" ,
smoothing = "both" ,
config_optim = list() ,
config_post = list() ,
inception = NULL # pretrained PLNfit used as initialization
) {
if (!is.null(inception)) stopifnot(isPLNfit(inception))
## post-treatment config
config_pst <- config_post_default_PLNmixture
config_pst[names(config_post)] <- config_post
config_pst$trace <- trace
## optimization config
backend <- match.arg(backend)
stopifnot(backend %in% c("nlopt", "torch"))
if (backend == "nlopt") {
stopifnot(config_optim$algorithm %in% available_algorithms_nlopt)
config_opt <- config_default_nlopt
}
if (backend == "torch") {
stopifnot(config_optim$algorithm %in% available_algorithms_torch)
config_opt <- config_default_torch
}
config_opt$ftol_out <- 1e-3
config_opt$maxit_out <- 50
config_opt$it_smooth <- 1
config_opt[names(config_optim)] <- config_optim
config_opt$trace <- trace
structure(list(
backend = backend ,
trace = trace ,
covariance = covariance ,
init_cl = init_cl ,
smoothing = smoothing ,
config_optim = config_opt ,
config_post = config_pst ,
inception = inception ), class = "PLNmodels_param")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.