#'
#' @title Pooled excess risk estimate using the alternative random effect model meta-analysis
#' @description DerSimonian and Laird-based random effect meta-analysis of excess relative risk (ERR) or excess odds ratio (EOR) estimates with Richardson et al 2020 alternative model.
#'
#' @param err A numeric vector of the risk estimated from the individual studies
#' @param u A numeric vector of the upper bound of the confidence interval of the risk reported from the individual studies.
#' @param l A numeric vector of the lower bound of the confidence interval of the risk reported from the individual studies.
#' @param d A numeric vector of the maximum dose reported from the individual studies.
#' @param conf.level Coverage for confidence interval
#'
#'
#' @importFrom stats printCoefmat
#' @importFrom stats qnorm
#'
#'
#' @return Object of class "metaan.ara". A list that print the output from the alpexrand function. The following could be found from the list :
#' - err_tot (Effect): The pooled effect from excess relative risk (ERR) or excess odd ratio (EOR) estimates
#' - sd_tot_lnERR (SE-Log(Effect)): The standard error of the logarithm of the pooled effect (see reference Richardson et al 2020 for more details)
#' - l_tot (Lower CI): The lower confidence interval bound of the pooled effect (err_tot)
#' - u_tot (Upper CI): The upper confidence interval bound of the pooled effect (err_tot)
#' - Cochrane_stat (Cochran’s Q statistic): The value of the Cochrane's statistic of inter-study heterogeneity
#' - Degree_freedom (Degree of Freedom): The degree of freedom
#' - p_value (P-Value): The p-value of the statistic of Cochrane
#' - I_square (Higgins’ and Thompson’s I^2 (%)): I square value in percent (%) indicating the amount of the inter-study heterogeneity
#'
#'
#'
#'
#' @examples
#' study <- c("Canada", "Northern USA", "Chicago", "Georgia","Puerto", "Comm", "Madanapalle",
#' "UK", "South Africa", "Haiti", "Madras")
#' Risk <- c(0.205, 0.411, 0.254, 1.562, 0.712, 0.983, 0.804, 0.237, 0.625, 0.198, 1.012)
#' lower_ci <- c(0.086, 0.134, 0.149, 0.374, 0.573, 0.582, 0.516, 0.179, 0.393, 0.078, 0.895)
#' upper_ci <- c(0.486, 1.257, 0.431, 6.528, 0.886, 1.659, 1.254, 0.312, 0.996, 0.499, 1.145)
#' dose <- c(32.586, 15.257, 72.431, 6.528, 10.886, 11.659, 17.254, 20.312,
#' 10.996, 30.499, 41.145)
#'
#' donne <- data.frame(cbind(study, Risk, lower_ci, upper_ci, dose))
#'
#' donne$Risk <- as.numeric(as.character(donne$Risk))
#' donne$upper_ci <- as.numeric(as.character(donne$upper_ci))
#' donne$lower_ci <- as.numeric(as.character(donne$lower_ci))
#' donne$dose <- as.numeric(as.character(donne$dose))
#'
#' alpexrand(err=donne$Risk, u=donne$upper_ci, l=donne$lower_ci, d=donne$dose,
#' conf.level=0.95)
#'
#' @references
#' DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled clinical trials 7:177–188.
#'
#' Richardson, D. B., Abalo, K., Bernier, M. O., Rage, E., Leuraud, K., Laurier, D., ... & Little, M. P. (2020). Meta-analysis of published excess relative risk estimates. Radiation and Environmental Biophysics, 1-11.
#'
#' @export
#'
alpexrand <- function(err, u, l, d, conf.level=0.95){
if (conf.level>1 & conf.level<100)
conf.level<-conf.level/100
z.alpha <- (-qnorm((1-conf.level)/2))
C=min(d, na.rm=T)
A = log(C*err+1)
sd_A = log((C*u+1)/(C*l+1))/(2*z.alpha)
var_A = sd_A^2
A_tot1 = sum(A/var_A, na.rm = T)/sum(1/var_A, na.rm = T)
Q = sum(((A - A_tot1)/sd_A)^2)
sum_num_rand = sum(1/sd_A^4, na.rm = T)
sum_den_rand = sum(1/var_A, na.rm = T)
nstudies = length(A)
deltasq = max(0, (Q - (nstudies-1)) / (sum_den_rand - (sum_num_rand/sum_den_rand)))
sum_num = sum(A/(var_A + deltasq))
sum_den = sum(1/(var_A + deltasq))
A_tot = sum_num/sum_den
sd_Atot = 1/sqrt(sum_den)
# Compute heterogeneity
df = nstudies - 1
I = max(0 , round((1 - (df/Q))*100, 2))
# Compute the result
ret = list(err_tot = round((exp(A_tot)-1) / C, 2),
sd_tot_lnERR = round(sd_Atot, 2),
l_tot = round((exp(A_tot - z.alpha*sd_Atot)-1)/C, 2),
u_tot = round((exp(A_tot + z.alpha*sd_Atot)-1)/C, 2),
Cochrane_stat = round(Q, 2),
Degree_freedom = round(df, 2),
p_value = round(stats::pchisq(Q, df, lower.tail = F), 2),
I_square = I )
class(ret) <- "metaan.ara"
ret
}
#'
#' @title Pooled excess risk estimate using the alternative random effect model meta-analysis
#' @description Alternative fixed effect model for alternative meta-analysis of excess relative risk (ERR) or excess odds ratio (EOR) estimates.
#'
#'
#'
#' @param x Object of class metaan.ara
#' @param ... Other arguments
#'
#' @importFrom stats printCoefmat
#' @importFrom stats qnorm
#' @rdname metaan.ara
#'
#' @return
#' @export
#'
#'
#'
#'
print.metaan.ara <- function(x, ...){
retmat_a = cbind(x$err_tot, x$sd_tot, x$l_tot, x$u_tot)
retmat_b = cbind(x$Cochrane_stat, x$Degree_freedom, x$p_value)
retmat_c = cbind(x$I_square)
colnames(retmat_a) <- c("Effect", "SE-Log(Effect)", "Lower CI", "Upper CI")
colnames(retmat_b) <- c("Cochran Q statistic", "Degree of Freedom", "P-Value")
colnames(retmat_c) <- c("Higgins and Thompson I^2 (%)")
rownames(retmat_a) <- " "
rownames(retmat_b) <- " "
rownames(retmat_c) <- " "
if(any(is.na(x$sd_tot))) retmat_a = retmat_a[,-2, drop=FALSE]
cat(" \n")
cat(" Alternative meta-analysis with random effect model \n")
cat("---------------------------------------------------- \n")
cat(" \n")
printCoefmat(retmat_a)
cat(" \n")
cat("---------------------------------------------------- \n")
cat(" \n")
cat(" Test of heterogeneity \n")
cat(" \n")
printCoefmat(retmat_b)
cat(" \n")
cat("---------------------------------------------------- \n")
cat(" \n")
printCoefmat(retmat_c)
cat("____________________________________________________ \n")
cat(" \n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.