#' Score the Short Version of the Revised Drug Use Screening Inventory (DUSI-R) (Tarter, 1990)
#'
#' @param df a data.frame containing the 15 DUSI-R SF items to be scored
#' @param item_prefix a character prefix of the items names in \code{df} to be scored. Default: "DUSI_"
#' @param max_impute the proportion of missingness [0..1) or number [1..n] of missing values per scale. Default: 0.2
#' Below this threshold, the person subscale mean will be imputed for missing items.
#' @param drop_items whether to remove the item-level data from the \code{df}. Default: FALSE
#' @param input_codes the original T/F coding scheme of the input data.frame in the form c(False Code, True Code).
#' These are converted to the specified false and true value.
#' @param false_value the 'False' value for the item anchors, used in score validation. Default: 0
#' @param true_value the 'True' value for the item anchors, used in score validation. Default: 1
#' @param bad_items numeric value or vector of the items that need to be dropped before imputation or calculation of subscales
#' @param add_alphas whether to compute coefficient alpha for the total scale and return a column attribute. Default: TRUE
#'
#' @details
#'
#' Adds two columns, \code{DUSI_total} and \code{DUSI_density}, to \code{df} containing the sum of scores and
#' mean of the items for the scales (i.e., the "absolute problem density"), respectively.
#'
#' Note: the code assumes that pasting together the \code{item_prefix} and the numbers 1:15
#' will yield the 15 items from the test.
#'
#'
#' @export
#' @author Michael Hallquist, Zach Vig
#'
#' @importFrom dplyr select mutate
#'
score_dusi <- function(df, item_prefix="DUSI_", max_impute=0.2, drop_items=FALSE,
input_codes=c(0,1), false_value=0, true_value=1, bad_items=NULL,
add_alphas=TRUE) {
#validate data.frame and items
orig_items <- paste0(item_prefix, 1:15) #expected item names
stopifnot(is.data.frame(df))
stopifnot(all(orig_items %in% names(df)))
stopifnot(length(input_codes)==2)
input_codes_valid <- apply(df[,orig_items], 1, function(row) { all(row >= min(input_codes) & row <= max(input_codes), na.rm=TRUE) })
if(any(!input_codes_valid)) {
warning("Check your input_codes as some values fall outside of this range. \n Returning data.frame unchanged")
return(df)
}
#convert values, if applicable
df[,orig_items] <- data.frame(ifelse(df[,orig_items] == input_codes[1],false_value,true_value))
#validate item responses
responses_valid <- apply(df[,orig_items], 1, function(row) { all(row >= false_value & row <= true_value, na.rm=TRUE) })
if (any(!responses_valid)) {
warning("Some responses fall outside of the allowable range: F = ", false_value, ", T = ", true_value, "\n Returning data.frame unchanged")
print(df[!responses_valid, orig_items])
return(df)
}
#NB. There is no reverse scoring for the DUSI
#drop bad item(s), before imputation and calculation of scores
if(!is.null(bad_items) && is.numeric(bad_items)) {
bad_items <- paste0(item_prefix, bad_items)
total_items <- setdiff(orig_items,bad_items)
} else {
total_items <- orig_items
}
#mean impute, if requested
if (max_impute > 0) {
df <- mean_impute_items(df, total_items, thresh=max_impute) }
#compute row sums
df <- df %>% mutate(
DUSI_total = rowSums(across(all_of(total_items))))
#compute row means
df <- df %>% mutate(
DUSI_density = rowMeans(across(all_of(total_items))))
#compute alpha
if (add_alphas) {
attr(df[["DUSI_total"]], "alpha") <- psych::alpha(df[,total_items],max=100,warnings = F)$total
}
#drop item-level data
if (drop_items) { df <- df %>% select(-all_of(orig_items)) }
return(df)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.