R/RLEPlot.R

Defines functions RLEPlot

Documented in RLEPlot

#' Plots different versions of relative log expression plots
#'
#' \code{RLEPlot} generates three different types of relative log expression plots for high-dimensional data.
#'
#' @param X A matrix of gene expression values.
#' @param Y A matrix of gene expression values.
#' @param center A logical scalar; \code{TRUE} if centering should be applied.
#' @param name A vector of characters describing the data contained in \code{X} and \code{Y}.
#' @param title A character string describing the title of the plot.
#' @param method The type of RLE plot to be displayed; possible inputs are \code{"IQR.points"}, \code{"IQR.boxplots"} 
#'	and \code{"minmax"} (for information see details).
#' @param anno A dataframe or a matrix containing the annotation of arrays in \code{X} and \code{Y} (only applicable for \code{method="IQR.points"});
#' 	if \code{anno=NULL} data points are not colored.
#' @param Factor A character string corresponding to a column name of \code{anno} to be used for coloring.
#' @param numeric A logical scalar indicating whether \code{Factor} is numerical.
#' @param new.legend A vector describing the names used for labelling; if \code{NULL} 
#' labels in \code{Factor} are used. 
#' @param outlier A logical indicating whether outliers should be plotted; only applicable when \code{method="minmax"}.
#' @return \code{RLEPlot} returns a plot.
#' 
#' @details
#' There are three different RLE plots that can be generated using \code{RLEPlot}:
#' 	\describe{
#'	\item{\code{"IQR.points"}}{Median expression vs. inter-quantile range of every array.}
#'	\item{\code{"IQR.boxplots"}}{Boxplots of the 25\% and 75\% quantile of all arrays.}
#'	\item{\code{"Minmax"}}{Ordinary RLE plots for the 5 arrays with the smallest and largest inter-quantile ranges.}
#'	}
#' 	Note that normal RLE plots are not supplied as they are not very suitable for high-dimensional
#'	data.
#' @examples
#' Y<-simulateGEdata(500, 500, 10, 2, 5, g=NULL, Sigma.eps=0.1, 250, 100, check.input=FALSE)
#' Y.hat<-RUVNaiveRidge(Y, center=TRUE, nc_index=251:500, 0, 10, check.input=TRUE)
#' try(dev.off(), silent=TRUE)
#' RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="IQR.points")
#' try(dev.off(), silent=TRUE)
#' RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="IQR.boxplots")
#' try(dev.off(), silent=TRUE)
#' RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="minmax")
#'
#' #Create a random annotation file
#' anno<-as.matrix(sample(1:4, dim(Y.hat)[1], replace=TRUE))
#' colnames(anno)<-"Factor"
#' try(dev.off(), silent=TRUE)
#' RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="IQR.points",
#' anno=anno, Factor="Factor", numeric=TRUE)
#' @author Saskia Freytag
#' @export
RLEPlot<-function(	X, # old matrix of gene expression
					Y, # new matrix of gene expression
					center=TRUE,
					name,
					title,
					method=c("IQR.points", "IQR.boxplots", "minmax"),
					anno=NULL,
					Factor=NULL,
					numeric=FALSE,
					new.legend=NULL,
					outlier=FALSE
					){
		
	#require(grDevices)
	
	if(any(is.null(Factor)|is.null(anno))==FALSE){
		if(is.null(anno)|is.null(Factor)) stop("Both anno and factor have to be specified.")
		if(any(colnames(anno)==Factor)==FALSE) stop("Factor has to be a column of anno.")
		if(dim(anno)[1]!=dim(Y)[1]) stop("Annotation does not match.")
	}
	
	if(center){
		Y<-scale(Y, center=TRUE, scale=FALSE)
		X<-scale(X, center=TRUE, scale=FALSE)
	}
	
	if(method[1]!="IQR.points"){
		Y.summary<-apply(Y, 1, summary)
		X.summary<-apply(X, 1, summary)
	}
	
	if(method[1]=="IQR.points"){
		
		Y.IQR<-apply(Y,1, function(x) findIQR(x))
		X.IQR<-apply(X,1, function(x) findIQR(x))
		
		Y.Median<-apply(Y,1, function(x) median(x))
		X.Median<-apply(X,1, function(x) median(x))
		
		if((is.null(anno)|is.null(factor))==FALSE){
			
			category<-as.matrix(as.character(anno[, which(colnames(anno)==Factor)]))
			category<-cbind(category, 1:length(category))
			colnames(category)<-c("x", "Ind")
			n.category<-length(unique(anno[, which(colnames(anno)==Factor)]))
		
			colours<-hcl(h = seq(0,360,round(360/n.category,2)), c=45, l=70)
			if (numeric==TRUE){
				colour.code<-cbind(unique(as.character(category[,1]))[order(unique(as.numeric(category[,1])))],colours[1:n.category])
			} else {colour.code<-cbind(sort(unique(as.character(category[,1])), na.last=T),colours[1:n.category])}
			colnames(colour.code)<-c("x", "colour")
			new.colours<-merge(category, colour.code, by="x")
			new.colours<-new.colours[order(as.numeric(as.character(new.colours[,2]))),]
			new.colours<-new.colours[,3]
			
			layout(matrix(c(1,2,3),nrow=1), widths=c(2,4,4))
			par(mar = c(3, 2.5, 2, 1), mgp = c(1.3, 0.45, 0))
			plot.new()
			if(is.null(new.legend)){
				legend("topleft", legend=colour.code[,1], col=colour.code[,2], ncol=1, bty="n", pch=16, cex=0.75)
			} else{
				legend("topleft", legend=new.legend, col=colour.code[,2], ncol=1, bty="n", pch=16, cex=0.75)
			}
			mtext(paste(title), side=3, line=0, cex = 1)
			xlim<-c(min(c(X.Median, Y.Median)),max(c(X.Median,Y.Median)))
			ylim<-c(min(c(X.IQR, Y.IQR)),max(c(X.IQR,Y.IQR)))
			plot(X.Median, X.IQR ,pch=1, main=paste(name[1]), col=as.character(new.colours), 
			xlab="Median", ylab="IQR", bty="l", xlim=xlim, ylim=ylim)
			plot(Y.Median, Y.IQR ,pch=1, main=paste(name[2]), col=as.character(new.colours), 
			xlab="Median", ylab="IQR", bty="l", xlim=xlim, ylim=ylim)
			
		} else {
			par(mfrow=c(1,2))
			plot(X.Median, X.IQR ,pch=19, main=paste(name[1]), col="gray", xlab="Median", ylab="IQR", bty="l")
			plot(Y.Median, Y.IQR ,pch=19, main=paste(name[2]), col="gray", xlab="Median", ylab="IQR", bty="l")
			mtext(paste(title), side=3, line=-1, cex = 1)
		}
		
	}
	
	if(method[1]=="IQR.boxplots"){
		boxplot(t(X.summary[c(2,5),]), border="red", main=paste(title), las=2)
		abline(h=0, lwd=2, lty=2, col="grey", bty="l")
		boxplot(t(Y.summary[c(2,5),]), border="black", add=TRUE, las=2, boxwex=0.5)
		legend("bottomright", legend=name ,text.col=c("red", "black"), bty="n")
	}
	
	if(method[1]=="minmax"){
		index.Y<-findMinmaxSamples(X)
		boxplot(t(X[index.Y,]), border=c(rep("tomato",5),rep("red",5)), 
		las=2, outline=outlier, main=title, bty="l")
		boxplot(t(Y[index.Y,]), border=c(rep("gray30",5),rep("black",5)), main=paste(title), 
		las=2, outline=outlier, boxwex=0.5, add=TRUE)
		legend("topleft", legend=name ,text.col=c("red", "black"), bty="n")
		abline(h=0, lwd=2, lty=2, col="grey")
	}
	
}
PeteHaitch/RUVcorr documentation built on May 9, 2017, 5:43 p.m.