#' Class RandomForestSolver
#'
#' @import randomForest
#' @include Solver.R
#' @import methods
#'
#' @name RandomForestSolver-class
#' @rdname RandomForestSolver-class
.RandomForestSolver <- setClass("RandomForestSolver",
contains="Solver",
slots=c(regulatorWeights="numeric")
)
#----------------------------------------------------------------------------------------------------
#' Create a Solver class object using the Random Forest solver
#'
#' @param mtx.assay An assay matrix of gene expression data
#' @param targetGene A designated target gene that should be part of the mtx.assay data
#' @param candidateRegulators The designated set of transcription factors that could be associated
#' with the target gene
#' @param regulatorWeights A set of weights on the transcription factors
#' (default = rep(1, length(candidateRegulators)))
#' @param quiet A logical denoting whether or not the solver should print output
#'
#' @return A Solver class object with Random Forest as the solver
#'
#' @seealso \code{\link{solve.RandomForest}}, \code{\link{getAssayData}}
#'
#' @family Solver class objects
#'
#' @export
#'
#' @examples
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' targetGene <- "MEF2C"
#' candidateRegulators <- setdiff(rownames(mtx.sub), targetGene)
#' rf.solver <- RandomForestSolver(mtx.sub, targetGene, candidateRegulators)
RandomForestSolver <- function(mtx.assay=matrix(), targetGene, candidateRegulators,
regulatorWeights=rep(1, length(candidateRegulators)),
quiet=TRUE)
{
if(any(grepl(targetGene, candidateRegulators)))
candidateRegulators <- candidateRegulators[-grep(targetGene, candidateRegulators)]
candidateRegulators <- intersect(candidateRegulators, rownames(mtx.assay))
stopifnot(length(candidateRegulators) > 0)
obj <- .RandomForestSolver(Solver(mtx.assay=mtx.assay,
quiet=quiet,
targetGene=targetGene,
candidateRegulators=candidateRegulators),
regulatorWeights=regulatorWeights)
# Send a warning if there's a row of zeros
if(!is.na(max(mtx.assay)) & any(rowSums(mtx.assay) == 0))
warning("One or more gene has zero expression; this may yield warnings when using Random Forest.")
obj
} # RandomForestSolver, the constructor
#----------------------------------------------------------------------------------------------------
#' Show the Random Forest Solver
#'
#' @rdname show.RandomForestSolver
#' @aliases show.RandomForestSolver
#'
#' @param object An object of the class RandomForestSolver
#'
#' @return A truncated view of the supplied object
#'
#' @examples
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' target.gene <- "MEF2C"
#' tfs <- setdiff(rownames(mtx.sub), target.gene)
#' rf.solver <- RandomForestSolver(mtx.sub, target.gene, tfs)
#' show(rf.solver)
setMethod('show', 'RandomForestSolver',
function(object) {
regulator.count <- length(getRegulators(object))
if(regulator.count > 10){
regulatorString <- paste(getRegulators(object)[1:10], collapse=",")
regulatorString <- sprintf("%s...", regulatorString);
}
else
regulatorString <- paste(getRegulators(object), collapse=",")
msg = sprintf("RandomForestSolver with mtx.assay (%d, %d), targetGene %s, %d candidate regulators %s",
nrow(getAssayData(object)), ncol(getAssayData(object)),
getTarget(object), regulator.count, regulatorString)
cat (msg, '\n', sep='')
})
#----------------------------------------------------------------------------------------------------
#' Run the Random Forest Solver
#'
#' @rdname solve.RandomForest
#' @aliases run.RandomForestSolver solve.RandomForest
#'
#' @description
#' Given a TReNA object with RandomForest as the solver, use the \code{\link{randomForest}} function
#' to estimate coefficients for each transcription factor as a predictor of the target gene's
#' expression level.
#'
#' @param obj An object of class TReNA with "randomForest" as the solver string
#'
#' @return A data frame containing the IncNodePurity for each candidate regulator. This coefficient
#' estimates the relationship between the candidates and the target gene.
#'
#' @seealso \code{\link{randomForest}}, \code{\link{RandomForestSolver}}
#'
#' @family solver methods
#'
#' @examples
#' # Load included Alzheimer's data, create a TReNA object with Random Forest as solver, and solve
#' load(system.file(package="trena", "extdata/ampAD.154genes.mef2cTFs.278samples.RData"))
#' targetGene <- "MEF2C"
#' candidateRegulators <- setdiff(rownames(mtx.sub), targetGene)
#' rf.solver <- RandomForestSolver(mtx.sub, targetGene, candidateRegulators)
#' tbl <- run(rf.solver)
setMethod("run", "RandomForestSolver",
function (obj){
mtx <- getAssayData(obj)
target.gene <- getTarget(obj)
tfs <- getRegulators(obj)
stopifnot(target.gene %in% rownames(mtx))
stopifnot(all(tfs %in% rownames(mtx)))
if(length(tfs)==0) return(NULL)
x <- t(mtx[tfs,,drop=FALSE])
y <- as.vector(t(mtx[target.gene,])) # Change y to a vector to avoid RF warning
fit <- randomForest( x = x, y = y )
# Grab output and sort it
edges <- fit$importance
edges <- edges[order(edges, decreasing=TRUE),]
return(data.frame(row.names = names(edges),
IncNodePurity = edges))
})
#----------------------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.