run_SNF | R Documentation |
Run similarity network fusion
run_SNF(
dataL = NULL,
alpha = 0.5,
K = 20,
Iterations = 20,
dist.method = "Euclidean",
survival = NA,
max.cluster = 5,
std.normalize = TRUE,
cnv.index = 0
)
dataL |
list( t(mRNA.snf.df), t(methylation.snf.df), t(cnv.snf.df) ) |
alpha |
Default 0.5. hyperparameter, usually (0.3~0.8) Variance for local model |
K |
Default 20. Number of neighbors, must be greater than 1. usually (10~30) 20 |
Iterations |
T.Default 20. Number of Iterations, usually (10~50) |
dist.method |
Default Euclidean. pearson, spearman, kendall |
survival |
Must a data frame. colnames OS.time, OS.event, RFS.time, RFS.event. Rownames must be sample name. Two columns or four columns. |
std.normalize |
Default TRUE |
cnv.index |
Default 0. If CNV data index is specified, Euclidean will be used to calculate distance |
run_SNF( list( t(mRNA.snf.df), t(methylation.snf.df), t(cnv.snf.df) ), alpha = 0.5, K = 20, Iterations = 20 )
https://cran.r-project.org/web/packages/SNFtool/SNFtool.pdf
Distance reference: https://www.rdocumentation.org/packages/bioDist/versions/1.44.0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.