run_SNF: Run similarity network fusion

View source: R/SNF.R

run_SNFR Documentation

Run similarity network fusion

Description

Run similarity network fusion

Usage

run_SNF(
  dataL = NULL,
  alpha = 0.5,
  K = 20,
  Iterations = 20,
  dist.method = "Euclidean",
  survival = NA,
  max.cluster = 5,
  std.normalize = TRUE,
  cnv.index = 0
)

Arguments

dataL

list( t(mRNA.snf.df), t(methylation.snf.df), t(cnv.snf.df) )

alpha

Default 0.5. hyperparameter, usually (0.3~0.8) Variance for local model

K

Default 20. Number of neighbors, must be greater than 1. usually (10~30) 20

Iterations

T.Default 20. Number of Iterations, usually (10~50)

dist.method

Default Euclidean. pearson, spearman, kendall

survival

Must a data frame. colnames OS.time, OS.event, RFS.time, RFS.event. Rownames must be sample name. Two columns or four columns.

std.normalize

Default TRUE

cnv.index

Default 0. If CNV data index is specified, Euclidean will be used to calculate distance

Examples

run_SNF( list( t(mRNA.snf.df), t(methylation.snf.df), t(cnv.snf.df) ),  alpha = 0.5, K = 20, Iterations = 20    )
https://cran.r-project.org/web/packages/SNFtool/SNFtool.pdf
Distance reference: https://www.rdocumentation.org/packages/bioDist/versions/1.44.0

ProfessionalFarmer/loonR documentation built on Oct. 9, 2024, 9:56 p.m.