Description Usage Arguments Examples
View source: R/associationTest.R
Hierarchical inference testing for phenotype-SNP association.
1 2 3 4 |
pheno |
an object of class |
geno |
an object of class |
B |
a integer indicating the number of sample-splits. |
p.samp1 |
a value specifying the fraction of data used for the LASSO sample-split.
The ANOVA sample-split is |
nfolds |
Number of folds (default is 5). See |
overall.lambda |
Logical, if true, lambda is estimated once, if false (default), lambda is estimated for each sample split. |
lambda.opt |
a criterion for optimum selection of cross validated lasso. Either
"lambda.1se" (default) or "lambda.min". See
|
alpha |
a single value in the range of 0 to 1 for the elastic net mixing parameter. |
gamma |
a vector of gamma-values used in significance estimation. |
max.p.esti |
a maximum for computed p-values. All p-values above this value are set
to one. Small |
seed |
a RNG seed, see |
mc.cores |
a number of cores for parallelising. The maximum is
|
trace |
logical, if |
... |
additional arguments for |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | # If you want to run the examples, use:
# example(qtcatHit, run.dontrun = TRUE)
## Not run:
# files containing example data for SNP data and the phenotype
pfile <- system.file("extdata/phenodata.csv", package = "qtcat")
gfile <- system.file("extdata/snpdata.csv", package = "qtcat")
pdat <- read.csv(pfile, header = TRUE)
snp <- read.snpData(gfile, sep = ",")
clust <- qtcatClust(snp)
geno <- qtcatGeno(snp, clust)
pheno <- qtcatPheno(names = pdat[, 1],
pheno = pdat[, 2],
covariates = model.matrix(~ pdat[, 3]))
# fitting HIT
fitted <- qtcatHit(pheno, geno)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.