## These functions copied from CRAN package feature_1.2.10
## See: http://cran.fhcrc.org/web/packages/feature/index.html
SignifFeatureData <- function (x, d, dest, SignifFeature)
{
n <- nrow(x)
x.ind <- matrix(0, ncol = d, nrow = n)
for (j in 1:d) x.ind[, j] <- findInterval(x[, j], dest$x.grid[[j]])
return(SignifFeature[x.ind])
}
SignifFeatureRegion <- function (n, d, gcounts, gridsize, dest, bandwidth, signifLevel,
range.x, grad = TRUE, curv = TRUE, neg.curv.only = TRUE)
{
h <- bandwidth
ESS <- n * dest$est * prod(h) * (sqrt(2 * pi)^d)
SigESS <- ESS >= 5
Sig.scalar <- array(NA, dim = gridsize)
Sig2.scalar <- array(NA, dim = gridsize)
dest$est[dest$est < 0] <- 0
Sig.scalar <- 1/2 * (2 * sqrt(pi))^(-d) * n^(-1) * prod(h)^(-1) *
dest$est
if (d == 1)
Sig2.scalar <- (8 * sqrt(pi) * n * prod(h))^(-1) * dest$est
else if (d == 2)
Sig2.scalar <- (16 * pi * n * prod(h))^(-1) * dest$est
else if (d == 3)
Sig2.scalar <- (32 * pi^(3/2) * n * prod(h))^(-1) * dest$est
else if (d == 4)
Sig2.scalar <- (64 * pi^2 * n * prod(h))^(-1) * dest$est
matrix.sqrt <- function(A) {
sva <- svd(A)
if (min(sva$d) >= 0)
Asqrt <- sva$u %*% diag(sqrt(sva$d)) %*% t(sva$v)
else stop("Matrix square root is not defined")
return(Asqrt)
}
if (d > 1) {
WaldGrad <- array(NA, dim = gridsize)
WaldCurv <- array(NA, dim = gridsize)
local.mode <- array(FALSE, dim = gridsize)
}
if (d == 1) {
if (grad) {
obj1 <- drvkde(gcounts, drv = 1, bandwidth = h, binned = TRUE,
range.x = range.x, se = FALSE)
fhat1 <- obj1$est
Sig.inv12 <- 1/sqrt(Sig.scalar * h^(-2))
WaldGrad <- (Sig.inv12 * fhat1)^2
}
if (curv) {
obj2 <- drvkde(gcounts, drv = 2, bandwidth = h, binned = TRUE,
range.x = range.x, se = FALSE)
fhat2 <- obj2$est
Sig2.inv12 <- 1/sqrt(Sig2.scalar * 3 * h^(-4))
lambda1 <- Sig2.inv12 * fhat2
WaldCurv <- lambda1^2
local.mode <- (lambda1 < 0)
}
}
if (d == 2) {
if (grad) {
obj10 <- drvkde(gcounts, drv = c(1, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj01 <- drvkde(gcounts, drv = c(0, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
fhat10 <- obj10$est
fhat01 <- obj01$est
for (i1 in 1:gridsize[1]) for (i2 in 1:gridsize[2]) if (SigESS[i1,
i2]) {
Sig.inv12 <- 1/sqrt(Sig.scalar[i1, i2] * h^(-2))
WaldGrad[i1, i2] <- sum((Sig.inv12 * c(fhat10[i1,
i2], fhat01[i1, i2]))^2)
}
}
if (curv) {
Sig2.mat <- matrix(c(3/h[1]^4, 0, 1/(h[1]^2 * h[2]^2),
0, 1/(h[1]^2 * h[2]^2), 0, 1/(h[1]^2 * h[2]^2),
0, 3/h[2]^4), nrow = 3, ncol = 3)
Sig2.mat.inv <- chol2inv(chol(Sig2.mat))
obj20 <- drvkde(gcounts, drv = c(2, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj11 <- drvkde(gcounts, drv = c(1, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj02 <- drvkde(gcounts, drv = c(0, 2), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
fhat20 <- obj20$est
fhat11 <- obj11$est
fhat02 <- obj02$est
for (i1 in 1:gridsize[1]) for (i2 in 1:gridsize[2]) if (SigESS[i1,
i2]) {
Sig2.inv12 <- sqrt(1/Sig2.scalar[i1, i2]) * matrix.sqrt(Sig2.mat.inv)
fhat.temp <- Sig2.inv12 %*% c(fhat20[i1, i2],
fhat11[i1, i2], fhat02[i1, i2])
WaldCurv[i1, i2] <- sum(fhat.temp^2)
}
lambda1 <- ((fhat20 + fhat02) - sqrt((fhat20 - fhat02)^2 +
4 * fhat11^2))/2
lambda2 <- ((fhat20 + fhat02) + sqrt((fhat20 - fhat02)^2 +
4 * fhat11^2))/2
local.mode <- (lambda1 < 0) & (lambda2 < 0)
}
}
if (d == 3) {
if (grad) {
obj100 <- drvkde(gcounts, drv = c(1, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj010 <- drvkde(gcounts, drv = c(0, 1, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj001 <- drvkde(gcounts, drv = c(0, 0, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
fhat100 <- obj100$est
fhat010 <- obj010$est
fhat001 <- obj001$est
for (i1 in 1:gridsize[1]) for (i2 in 1:gridsize[2]) for (i3 in 1:gridsize[3]) if (SigESS[i1,
i2, i3]) {
Sig.inv12 <- 1/sqrt(Sig.scalar[i1, i2, i3] *
h^(-2))
WaldGrad[i1, i2, i3] <- sum((Sig.inv12 * c(fhat100[i1,
i2, i3], fhat010[i1, i2, i3], fhat001[i1, i2,
i3]))^2)
}
}
if (curv) {
obj200 <- drvkde(gcounts, drv = c(2, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj110 <- drvkde(gcounts, drv = c(1, 1, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj101 <- drvkde(gcounts, drv = c(1, 0, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj020 <- drvkde(gcounts, drv = c(0, 2, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj011 <- drvkde(gcounts, drv = c(0, 1, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj002 <- drvkde(gcounts, drv = c(0, 0, 2), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
fhat200 <- obj200$est
fhat110 <- obj110$est
fhat101 <- obj101$est
fhat020 <- obj020$est
fhat011 <- obj011$est
fhat002 <- obj002$est
Sig2.mat <- matrix(c(3/h[1]^4, 0, 0, 1/(h[1] * h[2])^2,
0, 1/(h[1] * h[3])^2, 0, 1/(h[1] * h[2])^2, 0,
0, 0, 0, 0, 0, 1/(h[1] * h[3])^2, 0, 0, 0, 1/(h[1] *
h[2])^2, 0, 0, 3/h[2]^4, 0, 1/(h[2] * h[3])^2,
0, 0, 0, 0, 1/(h[2] * h[3])^2, 0, 1/(h[1] * h[3])^2,
0, 0, 1/(h[2] * h[3])^2, 0, 3/h[3]^4), nrow = 6,
ncol = 6)
Sig2.mat.inv <- chol2inv(chol(Sig2.mat))
for (i1 in 1:gridsize[1]) for (i2 in 1:gridsize[2]) for (i3 in 1:gridsize[3]) if (SigESS[i1,
i2, i3]) {
Sig2.inv12 <- sqrt(1/Sig2.scalar[i1, i2, i3]) *
matrix.sqrt(Sig2.mat.inv)
fhat.temp <- Sig2.inv12 %*% c(fhat200[i1, i2,
i3], fhat110[i1, i2, i3], fhat101[i1, i2, i3],
fhat020[i1, i2, i3], fhat011[i1, i2, i3], fhat002[i1,
i2, i3])
D2.mat <- matrix(c(fhat200[i1, i2, i3], fhat110[i1,
i2, i3], fhat101[i1, i2, i3], fhat110[i1, i2,
i3], fhat020[i1, i2, i3], fhat011[i1, i2, i3],
fhat101[i1, i2, i3], fhat011[i1, i2, i3], fhat002[i1,
i2, i3]), nrow = 3)
lambda <- eigen(D2.mat, symmetric = TRUE, only.values = TRUE)$values
WaldCurv[i1, i2, i3] <- sum(fhat.temp^2)
local.mode[i1, i2, i3] <- all(lambda < 0)
}
}
}
if (d == 4) {
if (grad) {
obj1000 <- drvkde(gcounts, drv = c(1, 0, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0100 <- drvkde(gcounts, drv = c(0, 1, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0010 <- drvkde(gcounts, drv = c(0, 0, 1, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0001 <- drvkde(gcounts, drv = c(0, 0, 0, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
fhat1000 <- obj1000$est
fhat0100 <- obj0100$est
fhat0010 <- obj0010$est
fhat0001 <- obj0001$est
for (i1 in 1:gridsize[1]) for (i2 in 1:gridsize[2]) for (i3 in 1:gridsize[3]) for (i4 in 1:gridsize[4]) if (SigESS[i1,
i2, i3, i4]) {
Sig.inv12 <- 1/sqrt(Sig.scalar[i1, i2, i3, i4] *
h^(-2))
WaldGrad[i1, i2, i3, i4] <- sum((Sig.inv12 *
c(fhat1000[i1, i2, i3, i4], fhat0100[i1, i2,
i3, i4], fhat0010[i1, i2, i3, i4], fhat0001[i1,
i2, i3, i4]))^2)
}
}
if (curv) {
obj2000 <- drvkde(gcounts, drv = c(2, 0, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj1100 <- drvkde(gcounts, drv = c(1, 1, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj1010 <- drvkde(gcounts, drv = c(1, 0, 1, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj1001 <- drvkde(gcounts, drv = c(1, 0, 0, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0200 <- drvkde(gcounts, drv = c(0, 2, 0, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0110 <- drvkde(gcounts, drv = c(0, 1, 1, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0101 <- drvkde(gcounts, drv = c(0, 1, 0, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0020 <- drvkde(gcounts, drv = c(0, 0, 2, 0), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0011 <- drvkde(gcounts, drv = c(0, 0, 1, 1), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
obj0002 <- drvkde(gcounts, drv = c(0, 0, 0, 2), bandwidth = h,
binned = TRUE, range.x = range.x, se = FALSE)
fhat2000 <- obj2000$est
fhat1100 <- obj1100$est
fhat1010 <- obj1010$est
fhat1001 <- obj1001$est
fhat0200 <- obj0200$est
fhat0110 <- obj0110$est
fhat0101 <- obj0101$est
fhat0020 <- obj0020$est
fhat0011 <- obj0011$est
fhat0002 <- obj0002$est
Sig2.mat <- matrix(c(3/h[1]^4, 0, 0, 0, 1/(h[1] *
h[2])^2, 0, 0, 1/(h[1] * h[3])^2, 0, 1/(h[1] *
h[4])^2, 0, 1/(h[1] * h[2])^2, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1/(h[1] * h[3])^2, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1/(h[1] * h[4])^2, 0, 0, 0,
0, 0, 0, 1/(h[1] * h[2])^2, 0, 0, 0, 3/h[2]^4,
0, 0, 1/(h[2] * h[3])^2, 0, 1/(h[2] * h[4])^2,
0, 0, 0, 0, 0, 1/(h[2] * h[3])^2, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1/(h[2] * h[4])^2, 0, 0, 0,
1/(h[1] * h[3])^2, 0, 0, 0, 1/(h[2] * h[3])^2,
0, 0, 3/h[3]^4, 0, 1/(h[3] * h[4])^2, 0, 0, 0,
0, 0, 0, 0, 0, 1/(h[3] * h[4])^2, 0, 1/(h[1] *
h[4])^2, 0, 0, 0, 1/(h[2] * h[4])^2, 0, 0,
1/(h[3] * h[4])^2, 0, 3/h[4]^4), nrow = 10, ncol = 10)
Sig2.mat.inv <- chol2inv(chol(Sig2.mat))
for (i1 in 1:gridsize[1]) for (i2 in 1:gridsize[2]) for (i3 in 1:gridsize[3]) for (i4 in 1:gridsize[4]) if (SigESS[i1,
i2, i3, i4]) {
Sig2.inv12 <- sqrt(1/Sig2.scalar[i1, i2, i3,
i4]) * matrix.sqrt(Sig2.mat.inv)
fhat.temp <- Sig2.inv12 %*% c(fhat2000[i1, i2,
i3, i4], fhat1100[i1, i2, i3, i4], fhat1010[i1,
i2, i3, i4], fhat1001[i1, i2, i3, i4], fhat0200[i1,
i2, i3, i4], fhat0110[i1, i2, i3, i4], fhat0101[i1,
i2, i3, i4], fhat0020[i1, i2, i3, i4], fhat0011[i1,
i2, i3, i4], fhat0002[i1, i2, i3, i4])
D2.mat <- matrix(c(fhat2000[i1, i2, i3, i4],
fhat1100[i1, i2, i3, i4], fhat1010[i1, i2,
i3, i4], fhat1001[i1, i2, i3, i4], fhat1100[i1,
i2, i3, i4], fhat0200[i1, i2, i3, i4], fhat0110[i1,
i2, i3, i4], fhat0101[i1, i2, i3, i4], fhat1010[i1,
i2, i3, i4], fhat0110[i1, i2, i3, i4], fhat0020[i1,
i2, i3, i4], fhat0011[i1, i2, i3, i4], fhat1001[i1,
i2, i3, i4], fhat0101[i1, i2, i3, i4], fhat0011[i1,
i2, i3, i4], fhat0002[i1, i2, i3, i4]), nrow = 4)
WaldCurv[i1, i2, i3, i4] <- sum(fhat.temp^2)
lambda <- eigen(D2.mat, symmetric = TRUE, only.values = TRUE)$values
local.mode[i1, i2, i3, i4] <- all(lambda < 0)
}
}
}
if (grad) {
pval.Grad <- 1 - pchisq(WaldGrad, d)
pval.Grad.ord <- pval.Grad[order(pval.Grad)]
num.test <- sum(!is.na(pval.Grad.ord))
if (num.test >= 1)
num.test.seq <- c(1:num.test, rep(NA, prod(gridsize) -
num.test))
else num.test.seq <- rep(NA, prod(gridsize))
reject.nonzero <- ((pval.Grad.ord <= signifLevel/(num.test +
1 - num.test.seq)) & (pval.Grad.ord > 0))
reject.nonzero.ind <- which(reject.nonzero)
SignifGrad <- array(FALSE, dim = gridsize)
SignifGrad[which(pval.Grad == 0, arr.ind = TRUE)] <- TRUE
for (i in reject.nonzero.ind) SignifGrad[which(pval.Grad ==
pval.Grad.ord[i], arr.ind = TRUE)] <- TRUE
}
if (curv) {
pval.Curv <- 1 - pchisq(WaldCurv, d * (d + 1)/2)
pval.Curv.ord <- pval.Curv[order(pval.Curv)]
num.test <- sum(!is.na(pval.Curv.ord))
if (num.test >= 1)
num.test.seq <- c(1:num.test, rep(NA, prod(gridsize) -
num.test))
else num.test.seq <- rep(NA, prod(gridsize))
reject.nonzero <- ((pval.Curv.ord <= signifLevel/(num.test +
1 - num.test.seq)) & (pval.Curv.ord > 0))
reject.nonzero.ind <- which(reject.nonzero)
SignifCurv <- array(FALSE, dim = gridsize)
SignifCurv[which(pval.Curv == 0, arr.ind = TRUE)] <- TRUE
for (i in reject.nonzero.ind) SignifCurv[which(pval.Curv ==
pval.Curv.ord[i], arr.ind = TRUE)] <- TRUE
if (neg.curv.only)
SignifCurv <- SignifCurv & local.mode
}
if (grad & !curv)
return(list(grad = SignifGrad))
else if (!grad & curv)
return(list(curv = SignifCurv))
else if (grad & curv)
return(list(grad = SignifGrad, curv = SignifCurv))
}
dfltBWrange <- function (x, tau) {
d <- ncol(x)
if (d == 1)
x <- as.matrix(x)
r <- 2
cmb.fac.upp <- (4/((d + 2 * r + 2) * nrow(x)))^(1/(d + 2 *
r + 4))
r <- 0
cmb.fac.low <- (4/((d + 2 * r + 2) * nrow(x)))^(1/(d + 2 *
r + 4))
st.devs <- apply(x, 2, sd)
IQR.vals <- apply(x, 2, IQR)/(qnorm(3/4) - qnorm(1/4))
sig.hats <- apply(cbind(st.devs, IQR.vals), 1, min)
range.h <- list()
for (id in 1:d) {
h.upp <- cmb.fac.upp * sig.hats[id]
h.low <- 0.1 * cmb.fac.low * sig.hats[id]
range.h[[id]] <- c(h.low, h.upp)
}
return(range.h)
}
featureSignif <- function (x, bw, gridsize, scaleData = FALSE, addSignifGrad = TRUE,
addSignifCurv = TRUE, signifLevel = 0.05)
{
tau <- 5
if (is.vector(x)) {
d <- 1
n <- length(x)
names.x <- deparse(substitute(x))
if (scaleData)
x <- (x - min(x))/(max(x) - min(x))
}
else {
d <- ncol(x)
n <- nrow(x)
names.x <- colnames(x)
if (is.null(names.x)) {
names.xx <- deparse(substitute(x))
names.xx <- strsplit(names.xx, "\\[")[[1]][1]
names.x <- paste(names.xx, "[,", 1:d, "]", sep = "")
}
if (scaleData)
for (i in 1:d) x[, i] <- (x[, i] - min(x[, i]))/(max(x[,
i]) - min(x[, i]))
}
x <- as.matrix(x)
if (d > 4)
stop("Feature significance currently only available for 1- to 4-dimensional data")
if (missing(gridsize)) {
if (d == 1)
gridsize <- 401
if (d == 2)
gridsize <- rep(151, 2)
if (d == 3)
gridsize <- rep(51, 3)
if (d == 4)
gridsize <- rep(21, 4)
}
if (missing(bw)) {
bw.range <- dfltBWrange(as.matrix(x), tau)
bw <- matrix(unlist(bw.range), nrow = 2, byrow = FALSE)
dfltCounts.out <- dfltCounts(x, gridsize, apply(bw, 2,
max))
h.low <- bw[1, ]
h.upp <- bw[2, ]
hmix.prop <- 1/4
h.init <- h.low^(hmix.prop) * h.upp^(1 - hmix.prop)
h <- h.init
}
else {
dfltCounts.out <- dfltCounts(x, gridsize, bw)
h <- bw
}
gcounts <- dfltCounts.out$counts
range.x <- dfltCounts.out$range.x
dest <- drvkde(gcounts, drv = rep(0, d), bandwidth = h, binned = TRUE,
range.x = range.x, se = FALSE, gridsize = gridsize)
dest$est[dest$est < 0] <- 0
SignifFeatureRegion.mat <- SignifFeatureRegion(n, d, gcounts,
gridsize, dest, h, signifLevel, range.x, grad = addSignifGrad,
curv = addSignifCurv)
ESS <- n * dest$est * prod(h) * (sqrt(2 * pi)^d)
SigESS <- ESS >= 5
SignifGradRegion.mat <- SignifFeatureRegion.mat$grad & SigESS
SignifGradData.mat <- SignifFeatureData(x, d, dest, SignifGradRegion.mat)
SignifGradDataPoints <- x[SignifGradData.mat, ]
SignifCurvRegion.mat <- SignifFeatureRegion.mat$curv & SigESS
SignifCurvData.mat <- SignifFeatureData(x, d, dest, SignifCurvRegion.mat)
SignifCurvDataPoints <- x[SignifCurvData.mat, ]
feat <- c(list(x = x, names = names.x, bw = h, fhat = dest),
SignifFeatureRegion.mat, list(gradData = SignifGradData.mat,
gradDataPoints = SignifGradDataPoints, curvData = SignifCurvData.mat,
curvDataPoints = SignifCurvDataPoints))
class(feat) <- "fs"
return(feat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.