| readTCGA | R Documentation |
readTCGA function allows to read unzipped files:
clinical data - Merge_Clinical.Level_1
rnaseq data (genes' expressions) - rnaseqv2__illuminahiseq_rnaseqv2
genes' mutations data - Mutation_Packager_Calls.Level
Reverse phase protein array data (RPPA) - protein_normalization__data.Level_3
Merge transcriptome agilent data (mRNA) -
Merge_transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.Level_3
miRNASeq data -
Merge_mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3 or
"Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3"
methylation data -
Merge_methylation__humanmethylation27
isoforms data -
Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.Level_3
CNV data - segmented_scna_minus_germline_cnv_hg19
from TCGA project. Those files can be easily downloded with downloadTCGA function. See examples.
readTCGA(path, dataType, ...)
path |
See details and examples. |
dataType |
One of |
... |
Further arguments passed to the as.data.frame. |
All cohort names can be checked using: sub( x = names( infoTCGA() ), '-counts', '').
Parameter path specification:
If dataType = 'clinical' a path to a cancerType.clin.merged.txt file.
If dataType = 'mutations' a path to the unzziped folder Mutation_Packager_Calls.Level containing .maf files.
If dataType = 'rnaseq' a path to the uzziped file rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.Level.
If dataType = 'RPPA' a path to the unzipped file in folder protein_normalization__data.Level_3.
If dataType = 'mRNA' a path to the unzipped file cancerType.transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.data.txt.
If dataType = 'miRNASeq' a path to unzipped files cancerType.mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.data.txt or cancerType.mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.data.txt
If dataType = 'methylation' a path to unzipped files cancerType.methylation__humanmethylation27__jhu_usc_edu__Level_3__within_bioassay_data_set_function__data.data.txt.
If dataType = 'isoforms' a path to unzipped files cancerType.rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.data.txt.
If dataType = 'CNV' a path to unzipped files cancerType.Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg18__seg.Level_3.txt.
An output is a data.frame with dataType data.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
Marcin Kosinski, m.p.kosinski@gmail.com
Witold Chodor, witoldchodor@gmail.com
RTCGA website http://rtcga.github.io/RTCGA/articles/Data_Download.html.
Other RTCGA:
RTCGA-package,
boxplotTCGA(),
checkTCGA(),
convertTCGA(),
datasetsTCGA,
downloadTCGA(),
expressionsTCGA(),
heatmapTCGA(),
infoTCGA(),
installTCGA(),
kmTCGA(),
mutationsTCGA(),
pcaTCGA(),
survivalTCGA(),
theme_RTCGA()
## Not run:
##############
##### clinical
##############
dir.create('data')
# downloading clinical data
# dataset = "clinical" is default parameter so we may omit it
downloadTCGA(cancerTypes = c('BRCA', 'OV'),
destDir = 'data' )
# shorten paths so that they are shorter than 256 signs - windows issue
list.files("data", full.names = TRUE) %>%
file.rename(to = substr(., start = 1, stop = 50))
# reading datasets
sapply(c('BRCA', 'OV'), function(element){
path <- list.files('data', recursive = TRUE,
full.names = TRUE,
patten = "clin.merged.txt")
assign(value = readTCGA( path, 'clinical' ),
x = paste0(element, '.clin.data'),
envir = .GlobalEnv)})
############
##### rnaseq
############
dir.create('data2')
# downloading rnaseq data
downloadTCGA(cancerTypes = 'BRCA',
dataSet = 'Level_3__RSEM_genes_normalized',
destDir = 'data2')
# shorten paths so that they are shorter than 256 signs - windows issue
list.files("data2", full.names = TRUE) %>%
file.rename(to = substr(., start = 1, stop = 50))
path_rnaseq <- list.files('data2', recursive = TRUE,
full.names = TRUE,
patten = 'illuminahiseq')
readTCGA(path = pathRNA, dataType = 'rnaseq') -> rnaseq_data
###############
##### mutations
###############
# Example directory in which untarred data will be stored
dir.create('data3')
downloadTCGA(cancerTypes = 'OV',
dataSet = 'Mutation_Packager_Calls.Level',
destDir = 'data3')
# reading data
list.files('data3', recursive = TRUE) -> directory
readTCGA(directory, 'mutations') -> mut_file
#################
##### methylation
#################
# Example directory in which untarred data will be stored
dir.create('data4')
# Download KIRP methylation data and store it in data4 folder
cancerType = "KIRP"
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_methylation__humanmethylation27",
destDir = "data4")
# Shorten path of subdirectory with KIRP methylation data
list.files(path = "data4", full.names = TRUE) %>%
file.rename(to = file.path("data4", paste0(cancerType, ".methylation")))
# Remove manifest.txt file
list.files(path = "data4", full.names = TRUE,
recursive = TRUE, pattern = "MANIFEST") %>%
file.remove()
# Read KIRP methylation data
path <- list.files(path = "data4", full.names = TRUE, recursive = TRUE)
KIRP.methylation <- readTCGA(path, dataType = "methylation")
##########
##### RPPA
##########
# Directory in which untarred data will be stored
dir.create('data5')
# Download BRCA RPPA data and store it in data5 folder
cancerType = "BRCA"
downloadTCGA(cancerTypes = cancerType,
dataSet = "protein_normalization__data.Level_3",
destDir = "data5")
# Shorten path of subdirectory with BRCA RPPA data
list.files(path = "data5", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data5", paste0(cancerType, ".RPPA")))
# Remove manifest.txt file
list.files(path = "data5", full.names = TRUE,
recursive = TRUE, pattern = "MANIFEST") %>%
file.remove()
# Read BRCA RPPA data
path <- list.files(path = "data5", full.names = TRUE, recursive = TRUE)
BRCA.RPPA <- readTCGA(path, dataType = "RPPA")
##########
##### mRNA
##########
# Directory in which untarred data will be stored
dir.create('data6')
# Download UCEC mRNA data and store it in data6 folder
cancerType = "UCEC"
downloadTCGA(cancerTypes = cancerType,
dataSet = "agilentg4502a_07_3__unc_edu__Level_3",
destDir = "data6")
# Shorten path of subdirectory with UCEC mRNA data
list.files(path = "data6", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data6",paste0(cancerType, ".mRNA")))
# Remove manifest.txt file
list.files(path = "data6", full.names = TRUE,
recursive = TRUE, pattern = "MANIFEST") %>%
file.remove()
# Read UCEC mRNA data
path <- list.files(path = "data6", full.names = TRUE, recursive = TRUE)
UCEC.mRNA <- readTCGA(path, dataType = "mRNA")
##############
##### miRNASeq
##############
# Directory in which untarred data will be stored
dir.create('data7')
# Download BRCA miRNASeq data and store it in data7 folder
# Remember that miRNASeq data are produced by two machines:
# Illumina Genome Analyzer and Illumina HiSeq 2000 machines
cancerType <- "BRCA"
downloadTCGA(cancerTypes = cancerType,
dataSet = paste0("Merge_mirnaseq__illuminaga_mirnaseq__bcgsc",
"_ca__Level_3__miR_gene_expression__data.Level_3"),
destDir = "data7")
downloadTCGA(cancerTypes = cancerType,
dataSet = paste0("Merge_mirnaseq__illuminahiseq_mirnaseq__",
"bcgsc_ca__Level_3__miR_gene_expression__data.Level_3"),
destDir = "data7")
# Shorten path of subdirectory with BRCA miRNASeq data
list.files(path = "data7", full.names = TRUE) %>%
sapply(function(path){
if (grepl(pattern = "illuminaga", path)){
file.rename(from = grep(pattern = "illuminaga", path, value = TRUE),
to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminaga")))
} else if (grepl(pattern = "illuminahiseq", path)){
file.rename(from = grep(pattern = "illuminahiseq", path, value = TRUE),
to = file.path("data7",paste0(cancerType, ".miRNASeq.illuminahiseq")))
}
})
# Remove manifest.txt file
list.files(path = "data6", full.names = TRUE,
recursive = TRUE, pattern = "MANIFEST") %>%
file.remove()
# Read BRCA miRNASeq data
path <- list.files(path = "data7", full.names = TRUE, recursive = TRUE)
path_illuminaga <- grep("illuminaga", path, fixed = TRUE, value = TRUE)
path_illuminahiseq <- grep("illuminahiseq", path, fixed = TRUE, value = TRUE)
BRCA.miRNASeq.illuminaga <- readTCGA(path_illuminaga, dataType = "miRNASeq")
BRCA.miRNASeq.illuminahiseq <- readTCGA(path_illuminahiseq, dataType = "miRNASeq")
BRCA.miRNASeq.illuminaga <- cbind(machine = "Illumina Genome Analyzer",
BRCA.miRNASeq.illuminaga)
BRCA.miRNASeq.illuminahiseq <- cbind(machine = "Illumina HiSeq 2000",
BRCA.miRNASeq.illuminahiseq)
BRCA.miRNASeq <- rbind(BRCA.miRNASeq.illuminaga, BRCA.miRNASeq.illuminahiseq)
##############
##### isoforms
##############
# Directory in which untarred data will be stored
dir.create('data8')
# Download ACC isoforms data and store it in data8 folder
cancerType = "ACC"
downloadTCGA(cancerTypes = cancerType,
dataSet = paste0("Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc",
"_edu__Level_3__RSEM_isoforms_normalized__data.Level_3"),
destDir = "data8")
# Shorten path of subdirectory with ACC isoforms data
list.files(path = "data8", full.names = TRUE) %>%
file.rename(from = ., to = file.path("data8",paste0(cancerType, ".isoforms")))
# Remove manifest.txt file
list.files(path = "data6", full.names = TRUE,
recursive = TRUE, pattern = "MANIFEST") %>%
file.remove()
# Read ACC isoforms data
path <- list.files(path = "data8", full.names = TRUE, recursive = TRUE)
ACC.isoforms <- readTCGA(path, dataType = "isoforms")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.