Description Usage Arguments Value Note See Also Examples
View source: R/deleteWebservice.R
Delete a Microsoft Azure Machine Learning web service from your workspace.
1 | deleteWebService(ws, name, refresh = TRUE)
|
ws |
An AzureML workspace reference returned by |
name |
Either one row from the workspace |
refresh |
Set to |
The updated data.frame of workspace services is invisibly returned.
If more than one service matches the supplied name
, the first listed service will be deleted.
services
publishWebService
updateWebService
Other publishing functions: publishWebService
,
workspace
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | ## Not run:
# Use a default configuration in ~/.azureml, alternatively
# see help for `?workspace`.
ws <- workspace()
# Publish a simple model using the lme4::sleepdata ---------------------------
library(lme4)
set.seed(1)
train <- sleepstudy[sample(nrow(sleepstudy), 120),]
m <- lm(Reaction ~ Days + Subject, data = train)
# Deine a prediction function to publish based on the model:
sleepyPredict <- function(newdata){
predict(m, newdata=newdata)
}
ep <- publishWebService(ws, fun = sleepyPredict, name="sleepy lm",
inputSchema = sleepstudy,
data.frame=TRUE)
# OK, try this out, and compare with raw data
ans <- consume(ep, sleepstudy)$ans
plot(ans, sleepstudy$Reaction)
# Remove the service
deleteWebService(ws, "sleepy lm")
# Another data frame example -------------------------------------------------
# If your function can consume a whole data frame at once, you can also
# supply data in that form, resulting in more efficient computation.
# The following example builds a simple linear model on a subset of the
# airquality data and publishes a prediction function based on the model.
set.seed(1)
m <- lm(Ozone ~ ., data=airquality[sample(nrow(airquality), 100),])
# Define a prediction function based on the model:
fun <- function(newdata)
{
predict(m, newdata=newdata)
}
# Note the definition of inputSchema and use of the data.frame argument.
ep <- publishWebService(ws, fun=fun, name="Ozone",
inputSchema = airquality,
data.frame=TRUE)
ans <- consume(ep, airquality)$ans
plot(ans, airquality$Ozone)
deleteWebService(ws, "Ozone")
# Train a model using diamonds in ggplot2 ------------------------------------
# This example also demonstrates how to deal with factor in the data
data(diamonds, package="ggplot2")
set.seed(1)
train_idx = sample.int(nrow(diamonds), 30000)
test_idx = sample(setdiff(seq(1, nrow(diamonds)), train_idx), 500)
train <- diamonds[train_idx, ]
test <- diamonds[test_idx, ]
model <- glm(price ~ carat + clarity + color + cut - 1, data = train,
family = Gamma(link = "log"))
diamondLevels <- diamonds[1, ]
# The model works reasonably well, except for some outliers
plot(exp(predict(model, test)) ~ test$price)
# Create a prediction function that converts characters correctly to factors
predictDiamonds <- function(x){
x$cut <- factor(x$cut,
levels = levels(diamondLevels$cut), ordered = TRUE)
x$clarity <- factor(x$clarity,
levels = levels(diamondLevels$clarity), ordered = TRUE)
x$color <- factor(x$color,
levels = levels(diamondLevels$color), ordered = TRUE)
exp(predict(model, newdata = x))
}
# Publish the service
ws <- workspace()
ep <- publishWebService(ws, fun = predictDiamonds, name = "diamonds",
inputSchema = test,
data.frame = TRUE
)
# Consume the service
results <- consume(ep, test)$ans
plot(results ~ test$price)
deleteWebService(ws, "diamonds")
# Simple example using scalar input ------------------------------------------
ws <- workspace()
# Really simple example:
add <- function(x,y) x + y
endpoint <- publishWebService(ws,
fun = add,
name = "addme",
inputSchema = list(x="numeric",
y="numeric"),
outputSchema = list(ans="numeric"))
consume(endpoint, list(x=pi, y=2))
# Now remove the web service named "addme" that we just published
deleteWebService(ws, "addme")
# Send a custom R function for evaluation in AzureML -------------------------
# A neat trick to evaluate any expression in the Azure ML virtual
# machine R session and view its output:
ep <- publishWebService(ws,
fun = function(expr) {
paste(capture.output(
eval(parse(text=expr))), collapse="\n")
},
name="commander",
inputSchema = list(x = "character"),
outputSchema = list(ans = "character"))
cat(consume(ep, list(x = "getwd()"))$ans)
cat(consume(ep, list(x = ".packages(all=TRUE)"))$ans)
cat(consume(ep, list(x = "R.Version()"))$ans)
# Remove the service we just published
deleteWebService(ws, "commander")
# Understanding the scoping rules --------------------------------------------
# The following example illustrates scoping rules. Note that the function
# refers to the variable y defined outside the function body. That value
# will be exported with the service.
y <- pi
ep <- publishWebService(ws,
fun = function(x) x + y,
name = "lexical scope",
inputSchema = list(x = "numeric"),
outputSchema = list(ans = "numeric"))
cat(consume(ep, list(x=2))$ans)
# Remove the service we just published
deleteWebService(ws, "lexical scope")
# Demonstrate scalar inputs but sending a data frame for scoring -------------
# Example showing the use of consume to score all the rows of a data frame
# at once, and other invocations for evaluating multiple sets of input
# values. The columns of the data frame correspond to the input parameters
# of the web service in this example:
f <- function(a,b,c,d) list(sum = a+b+c+d, prod = a*b*c*d)
ep <- publishWebService(ws,
f,
name = "rowSums",
inputSchema = list(
a = "numeric",
b = "numeric",
c = "numeric",
d = "numeric"
),
outputSchema = list(
sum ="numeric",
prod = "numeric")
)
x <- head(iris[,1:4]) # First four columns of iris
# Note the following will FAIL because of a name mismatch in the arguments
# (with an informative error):
consume(ep, x, retryDelay=1)
# We need the columns of the data frame to match the inputSchema:
names(x) <- letters[1:4]
# Now we can evaluate all the rows of the data frame in one call:
consume(ep, x)
# output should look like:
# sum prod
# 1 10.2 4.998
# 2 9.5 4.116
# 3 9.4 3.9104
# 4 9.4 4.278
# 5 10.2 5.04
# 6 11.4 14.3208
# You can use consume to evaluate just a single set of input values with this
# form:
consume(ep, a=1, b=2, c=3, d=4)
# or, equivalently,
consume(ep, list(a=1, b=2, c=3, d=4))
# You can evaluate multiple sets of input values with a data frame input:
consume(ep, data.frame(a=1:2, b=3:4, c=5:6, d=7:8))
# or, equivalently, with multiple lists:
consume(ep, list(a=1, b=3, c=5, d=7), list(a=2, b=4, c=6, d=8))
# Remove the service we just published
deleteWebService(ws, "rowSums")
# A more efficient way to do the same thing using data frame input/output:
f <- function(df) with(df, list(sum = a+b+c+d, prod = a*b*c*d))
ep = publishWebService(ws, f, name="rowSums2",
inputSchema = data.frame(a = 0, b = 0, c = 0, d = 0))
consume(ep, data.frame(a=1:2, b=3:4, c=5:6, d=7:8))
deleteWebService(ws, "rowSums2")
# Automatically discover dependencies ----------------------------------------
# The publishWebService function uses `miniCRAN` to include dependencies on
# packages required by your function. The next example uses the `lmer`
# function from the lme4 package, and also shows how to publish a function
# that consumes a data frame by setting data.frame=TRUE. Note! This example
# depends on a lot of packages and may take some time to upload to Azure.
library(lme4)
# Build a sample mixed effects model on just a subset of the sleepstudy data...
set.seed(1)
m <- lmer(Reaction ~ Days + (Days | Subject),
data=sleepstudy[sample(nrow(sleepstudy), 120),])
# Deine a prediction function to publish based on the model:
fun <- function(newdata)
{
predict(m, newdata=newdata)
}
ep <- publishWebService(ws, fun=fun, name="sleepy lmer",
inputSchema= sleepstudy,
packages="lme4",
data.frame=TRUE)
# OK, try this out, and compare with raw data
ans = consume(ep, sleepstudy)$ans
plot(ans, sleepstudy$Reaction)
# Remove the service
deleteWebService(ws, "sleepy lmer")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.