Description Usage Arguments Value Note See Also Examples
Publish a function to Microsoft Azure Machine Learning as a web service. The web service created is a standard Azure ML web service, and can be used from any web or mobile platform as long as the user knows the API key and URL. The function to be published is limited to inputs/outputs consisting of lists of scalar values or single data frames (see the notes below and examples). Requires a zip program to be installed (see note below).
1 2 3 4 5 6 7 8 9 | publishWebService(ws, fun, name, inputSchema, outputSchema,
data.frame = FALSE, export = character(0), noexport = character(0),
packages, version = "3.1.0", serviceId, host = ws$.management_endpoint,
.retry = 3)
updateWebService(ws, fun, name, inputSchema, outputSchema, data.frame = FALSE,
export = character(0), noexport = character(0), packages,
version = "3.1.0", serviceId, host = ws$.management_endpoint,
.retry = 3)
|
ws |
An AzureML workspace reference returned by |
fun |
a function to publish; the function must have at least one argument. |
name |
name of the new web service; ignored when |
inputSchema |
either a list of |
outputSchema |
list of |
data.frame |
|
export |
optional character vector of variable names to explicitly export in the web service for use by the function. See the note below. |
noexport |
optional character vector of variable names to prevent from exporting in the web service. |
packages |
optional character vector of R packages to bundle in the web service, including their dependencies. |
version |
optional R version string for required packages (the version of R running in the AzureML Web Service). |
serviceId |
optional Azure web service ID; use to update an existing service (see Note below). |
host |
optional Azure regional host, defaulting to the global |
.retry |
number of tries before failing |
A data.frame describing the new service endpoints, cf. endpoints
. The output can be directly used by the consume
function.
Data Types
AzureML data types are different from, but related to, R types. You may specify the R types numeric, logical, integer,
and character
and those will be specified as AzureML types double, boolean, int32, string
, respectively.
Input and output schemas
Function input must be:
named scalar arguments with names and types specified in inputSchema
one or more lists of named scalar values
a single data frame when data.frame=TRUE
is specified; either explicitly specify the column names and types in inputSchema
or provide an example input data frame as inputSchema
Function output is always returned as a data frame with column names and types specified in outputSchema
. See the examples for example use of all three I/O options.
Updating a web service
Leave the serviceId
parameter undefined to create a new AzureML web service, or specify the ID of an existing web service to update it, replacing the function, inputSchema
, outputSchema
, and required R pacakges with new values. The name
parameter is ignored serviceId
is specified to update an existing web service.
The updateWebService
function is nearly an alias for publishWebService
, differing only in that the serviceId
parameter is required by updateWebService
.
The publishWebService
function automatically exports objects required by the function to a working environment in the AzureML machine, including objects accessed within the function using lexical scoping rules. Use the exports
parameter to explicitly include other objects that are needed. Use noexport
to explicitly prevent objects from being exported.
Note that it takes some time to update the AzureML service on the server. After updating the service, you may have to wait several seconds for the service to update. The time it takes will depend on a number of factors, including the complexity of your web service function.
External zip program required
The function uses zip
to compress information before transmission to AzureML. To use this, you need to have a zip program installed on your machine, and this program should be available in the path. The program should be called zip
otherwise R may not find it. On windows, it is sufficient to install RTools (see https://cran.r-project.org/bin/windows/Rtools/)
endpoints
, discoverSchema
, consume
and services
.
Other publishing functions: deleteWebService
,
workspace
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | ## Not run:
# Use a default configuration in ~/.azureml, alternatively
# see help for `?workspace`.
ws <- workspace()
# Publish a simple model using the lme4::sleepdata ---------------------------
library(lme4)
set.seed(1)
train <- sleepstudy[sample(nrow(sleepstudy), 120),]
m <- lm(Reaction ~ Days + Subject, data = train)
# Deine a prediction function to publish based on the model:
sleepyPredict <- function(newdata){
predict(m, newdata=newdata)
}
ep <- publishWebService(ws, fun = sleepyPredict, name="sleepy lm",
inputSchema = sleepstudy,
data.frame=TRUE)
# OK, try this out, and compare with raw data
ans <- consume(ep, sleepstudy)$ans
plot(ans, sleepstudy$Reaction)
# Remove the service
deleteWebService(ws, "sleepy lm")
# Another data frame example -------------------------------------------------
# If your function can consume a whole data frame at once, you can also
# supply data in that form, resulting in more efficient computation.
# The following example builds a simple linear model on a subset of the
# airquality data and publishes a prediction function based on the model.
set.seed(1)
m <- lm(Ozone ~ ., data=airquality[sample(nrow(airquality), 100),])
# Define a prediction function based on the model:
fun <- function(newdata)
{
predict(m, newdata=newdata)
}
# Note the definition of inputSchema and use of the data.frame argument.
ep <- publishWebService(ws, fun=fun, name="Ozone",
inputSchema = airquality,
data.frame=TRUE)
ans <- consume(ep, airquality)$ans
plot(ans, airquality$Ozone)
deleteWebService(ws, "Ozone")
# Train a model using diamonds in ggplot2 ------------------------------------
# This example also demonstrates how to deal with factor in the data
data(diamonds, package="ggplot2")
set.seed(1)
train_idx = sample.int(nrow(diamonds), 30000)
test_idx = sample(setdiff(seq(1, nrow(diamonds)), train_idx), 500)
train <- diamonds[train_idx, ]
test <- diamonds[test_idx, ]
model <- glm(price ~ carat + clarity + color + cut - 1, data = train,
family = Gamma(link = "log"))
diamondLevels <- diamonds[1, ]
# The model works reasonably well, except for some outliers
plot(exp(predict(model, test)) ~ test$price)
# Create a prediction function that converts characters correctly to factors
predictDiamonds <- function(x){
x$cut <- factor(x$cut,
levels = levels(diamondLevels$cut), ordered = TRUE)
x$clarity <- factor(x$clarity,
levels = levels(diamondLevels$clarity), ordered = TRUE)
x$color <- factor(x$color,
levels = levels(diamondLevels$color), ordered = TRUE)
exp(predict(model, newdata = x))
}
# Publish the service
ws <- workspace()
ep <- publishWebService(ws, fun = predictDiamonds, name = "diamonds",
inputSchema = test,
data.frame = TRUE
)
# Consume the service
results <- consume(ep, test)$ans
plot(results ~ test$price)
deleteWebService(ws, "diamonds")
# Simple example using scalar input ------------------------------------------
ws <- workspace()
# Really simple example:
add <- function(x,y) x + y
endpoint <- publishWebService(ws,
fun = add,
name = "addme",
inputSchema = list(x="numeric",
y="numeric"),
outputSchema = list(ans="numeric"))
consume(endpoint, list(x=pi, y=2))
# Now remove the web service named "addme" that we just published
deleteWebService(ws, "addme")
# Send a custom R function for evaluation in AzureML -------------------------
# A neat trick to evaluate any expression in the Azure ML virtual
# machine R session and view its output:
ep <- publishWebService(ws,
fun = function(expr) {
paste(capture.output(
eval(parse(text=expr))), collapse="\n")
},
name="commander",
inputSchema = list(x = "character"),
outputSchema = list(ans = "character"))
cat(consume(ep, list(x = "getwd()"))$ans)
cat(consume(ep, list(x = ".packages(all=TRUE)"))$ans)
cat(consume(ep, list(x = "R.Version()"))$ans)
# Remove the service we just published
deleteWebService(ws, "commander")
# Understanding the scoping rules --------------------------------------------
# The following example illustrates scoping rules. Note that the function
# refers to the variable y defined outside the function body. That value
# will be exported with the service.
y <- pi
ep <- publishWebService(ws,
fun = function(x) x + y,
name = "lexical scope",
inputSchema = list(x = "numeric"),
outputSchema = list(ans = "numeric"))
cat(consume(ep, list(x=2))$ans)
# Remove the service we just published
deleteWebService(ws, "lexical scope")
# Demonstrate scalar inputs but sending a data frame for scoring -------------
# Example showing the use of consume to score all the rows of a data frame
# at once, and other invocations for evaluating multiple sets of input
# values. The columns of the data frame correspond to the input parameters
# of the web service in this example:
f <- function(a,b,c,d) list(sum = a+b+c+d, prod = a*b*c*d)
ep <- publishWebService(ws,
f,
name = "rowSums",
inputSchema = list(
a = "numeric",
b = "numeric",
c = "numeric",
d = "numeric"
),
outputSchema = list(
sum ="numeric",
prod = "numeric")
)
x <- head(iris[,1:4]) # First four columns of iris
# Note the following will FAIL because of a name mismatch in the arguments
# (with an informative error):
consume(ep, x, retryDelay=1)
# We need the columns of the data frame to match the inputSchema:
names(x) <- letters[1:4]
# Now we can evaluate all the rows of the data frame in one call:
consume(ep, x)
# output should look like:
# sum prod
# 1 10.2 4.998
# 2 9.5 4.116
# 3 9.4 3.9104
# 4 9.4 4.278
# 5 10.2 5.04
# 6 11.4 14.3208
# You can use consume to evaluate just a single set of input values with this
# form:
consume(ep, a=1, b=2, c=3, d=4)
# or, equivalently,
consume(ep, list(a=1, b=2, c=3, d=4))
# You can evaluate multiple sets of input values with a data frame input:
consume(ep, data.frame(a=1:2, b=3:4, c=5:6, d=7:8))
# or, equivalently, with multiple lists:
consume(ep, list(a=1, b=3, c=5, d=7), list(a=2, b=4, c=6, d=8))
# Remove the service we just published
deleteWebService(ws, "rowSums")
# A more efficient way to do the same thing using data frame input/output:
f <- function(df) with(df, list(sum = a+b+c+d, prod = a*b*c*d))
ep = publishWebService(ws, f, name="rowSums2",
inputSchema = data.frame(a = 0, b = 0, c = 0, d = 0))
consume(ep, data.frame(a=1:2, b=3:4, c=5:6, d=7:8))
deleteWebService(ws, "rowSums2")
# Automatically discover dependencies ----------------------------------------
# The publishWebService function uses `miniCRAN` to include dependencies on
# packages required by your function. The next example uses the `lmer`
# function from the lme4 package, and also shows how to publish a function
# that consumes a data frame by setting data.frame=TRUE. Note! This example
# depends on a lot of packages and may take some time to upload to Azure.
library(lme4)
# Build a sample mixed effects model on just a subset of the sleepstudy data...
set.seed(1)
m <- lmer(Reaction ~ Days + (Days | Subject),
data=sleepstudy[sample(nrow(sleepstudy), 120),])
# Deine a prediction function to publish based on the model:
fun <- function(newdata)
{
predict(m, newdata=newdata)
}
ep <- publishWebService(ws, fun=fun, name="sleepy lmer",
inputSchema= sleepstudy,
packages="lme4",
data.frame=TRUE)
# OK, try this out, and compare with raw data
ans = consume(ep, sleepstudy)$ans
plot(ans, sleepstudy$Reaction)
# Remove the service
deleteWebService(ws, "sleepy lmer")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.