#' Posterior Summary of the AUC of a Multi-scale Occupancy Model's Predictions
#'
#' Estimates the posterior mean, median, and 95\% credible limits for the AUC of a multi-scale occupancy model's predictions.
#'
#'
#' @param fit object of class occModel that contains data and previous state of the model's Markov chain
#' @inheritParams posteriorSummary
#' @importFrom utils read.csv read.table
#' @importFrom pROC roc
#' @export
#'
#'
#' @return Prints estimates of summary statistics for the posterior distribution of the AUC of a multi-scale occupancy model's predictions. If \code{mcError}=TRUE, the Monte Carlo standard errors of these estimates are computed. If \code{outputSummary}=TRUE, the posterior summaries are returned in a list.
#'
#' @details This function estimates the posterior mean, median, and 95\% credible limits of the AUC (Area Under the Receiver Operating Characteristic curve) of a multi-scale occupancy model's predictions. The AUC of a model is sometimes used in model selection with higher values of AUC favored over lower values.
#'
#'
#' @examples
#'
#' data(gobyDetectionData)
#' detections = occData(gobyDetectionData, "site", "sample")
#' data(gobySurveyData)
#' gobySurveyData = scaleData(gobySurveyData) # center and scale numeric covariates
#'
#' fit1 = occModel(formulaSite = ~ veg,
#' formulaSiteAndSample = ~ sal + twg,
#' formulaReplicate = ~ sal + fish,
#' detectionMats = detections,
#' siteData = gobySurveyData,
#' niter = 1100,
#' niterInterval = 100,
#' siteColName = 'site',
#' )
#'
#' posteriorSummaryOfAUC(fit1, burnin=100, mcError=TRUE)
posteriorSummaryOfAUC <- function(
fit,
burnin = 1,
mcError = FALSE,
outputSummary = FALSE
) {
## make sure fit is a occModel object
if(!is.null(fit)){
if(!inherits(fit, "occModel")){
stop(paste(fit, "is not an occModel object"))
}
}
## make sure column names of file "mc.csv" correspond to those specified for fit
beta.names = paste('beta', fit$colNamesOfX, sep='.')
alpha.names = paste('alpha', fit$colNamesOfW, sep='.')
delta.names = paste('delta', fit$colNamesOfV, sep='.')
mc.names = c(beta.names, alpha.names, delta.names)
mcColumnNames = dimnames(read.csv('mc.csv'))[[2]]
if (length(mc.names) != length(mcColumnNames)) {
stop(paste("Column names in file 'mc.csv' do not match the model matrices of the occModel object"))
}
if (any(make.names(mc.names, unique=TRUE) != mcColumnNames)) {
stop(paste("Column names in file 'mc.csv' do not match the model matrices of the occModel object"))
}
## Compute psi vector for each draw of beta in Markov chain
X = fit$X
## Read Markov chain from file
mc = as.matrix(read.csv("mc.csv"))
mc.beta = matrix(mc[ , make.names(beta.names, unique=TRUE)], ncol=ncol(X))
mc.psi = pnorm(t(X %*% t(mc.beta)))
## Read in Z vector for each draw in Markov chain
mc.Z = as.matrix(read.table("mc.Z.txt", header=TRUE))
## Compute AUC for each draw in Markov chain
mc.AUC = rep(NA, nrow(mc.Z))
mc.sumOfZ = rowSums(mc.Z)
for (i in 1:nrow(mc.Z)) {
if (mc.sumOfZ[i]>0 & mc.sumOfZ[i]<ncol(mc.Z)) mc.AUC[i] = as.numeric(roc(mc.Z[i, ], mc.psi[i, ], quiet=TRUE)$auc)
}
if (sum(is.na(mc.AUC))>0) {
stop(paste('AUC cannot be computed for', sum(is.na(mc.AUC)), 'elements of Markov chain wherein site occupancy predictions were all zeros or all ones'))
}
## ...compute posterior means and quantiles
postStats = EstimatePosteriorStats(matrix(mc.AUC,ncol=1), burnin)
post.stats = postStats$estimate
post.stats.MCSE = postStats$MCerror
## Print estimated summaries of posterior
CR = '\n'
cat ('Bayesian estimates of AUC', CR)
print(round(post.stats, 3))
if (mcError){
cat (CR)
cat('Monte Carlo SE of Bayesian estimates', CR)
print(round(post.stats.MCSE,4))
}
retVal = invisible()
if (outputSummary) {
if (mcError) {
retVal = list(post.stats=post.stats, post.stats.MCSE=post.stats.MCSE)
}
else {
retVal = list(post.stats=post.stats)
}
}
retVal
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.