library(Giotto)
# createGiottoInstructions(python_path = '/your/path')
## Giotto 0.3.5 ##
## mini-test seqFish Giotto 0.3.5 ##
#temp_dir = '/your/path/'
temp_dir = getwd()
temp_dir = '~/Temp/'
## 1. giotto object ####
expr_path = system.file("extdata", "seqfish_field_expr.txt", package = 'Giotto')
loc_path = system.file("extdata", "seqfish_field_locs.txt", package = 'Giotto')
# default
VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path)
# with instructions (e.g. specific python path)
# myinstructions = createGiottoInstructions(python_path = '/your/path')
# VC_small <- createGiottoObject(raw_exprs = expr_path, spatial_locs = loc_path, instructions = myinstructions)
showGiottoInstructions(VC_small)
## 2. processing steps ####
VC_small <- filterGiotto(gobject = VC_small, expression_threshold = 0.5, gene_det_in_min_cells = 20, min_det_genes_per_cell = 0)
VC_small <- normalizeGiotto(gobject = VC_small, scalefactor = 6000, verbose = T)
VC_small <- addStatistics(gobject = VC_small)
VC_small <- adjustGiottoMatrix(gobject = VC_small, expression_values = c('normalized'), covariate_columns = c('nr_genes', 'total_expr'))
## 3. dimension reduction ####
VC_small <- calculateHVG(gobject = VC_small)
VC_small <- runPCA(gobject = VC_small, center = T)
?runPCA
screePlot(VC_small, ncp = 20)
jackstrawPlot(VC_small, ncp = 20)
plotPCA(VC_small)
VC_small <- runUMAP(VC_small, dimensions_to_use = 1:5, n_threads = 2)
plotUMAP(gobject = VC_small)
VC_small <- runtSNE(VC_small, dimensions_to_use = 1:5)
plotTSNE(gobject = VC_small)
## 4. clustering ####
VC_small <- createNearestNetwork(gobject = VC_small, dimensions_to_use = 1:5, k = 5)
VC_small <- doLeidenCluster(gobject = VC_small, resolution = 0.4, n_iterations = 1000)
plotUMAP(gobject = VC_small, cell_color = 'leiden_clus', show_NN_network = T, point_size = 2.5)
spatDimPlot(gobject = VC_small, cell_color = 'leiden_clus', spat_point_shape = 'voronoi')
showClusterHeatmap(gobject = VC_small, cluster_column = 'leiden_clus')
showClusterDendrogram(VC_small, h = 0.5, rotate = T, cluster_column = 'leiden_clus')
## 5. differential expression ####
gini_markers = findMarkers_one_vs_all(gobject = VC_small,
method = 'gini',
expression_values = 'normalized',
cluster_column = 'leiden_clus',
min_genes = 20,
min_expr_gini_score = 0.5,
min_det_gini_score = 0.5)
topgenes_gini = gini_markers[, head(.SD, 2), by = 'cluster']
violinPlot(VC_small, genes = topgenes_gini$genes, cluster_column = 'leiden_clus')
topgenes_gini2 = gini_markers[, head(.SD, 6), by = 'cluster']
plotMetaDataHeatmap(VC_small, selected_genes = topgenes_gini2$genes,
metadata_cols = c('leiden_clus'))
## 6. cell type annotation ####
clusters_cell_types = c('cell A', 'cell B', 'cell C', 'cell D',
'cell E', 'cell F', 'cell G')
names(clusters_cell_types) = 1:7
VC_small = annotateGiotto(gobject = VC_small, annotation_vector = clusters_cell_types,
cluster_column = 'leiden_clus', name = 'cell_types')
spatDimPlot(gobject = VC_small, cell_color = 'cell_types', spat_point_size = 3, dim_point_size = 3)
## 7. spatial grid ####
VC_small <- createSpatialGrid(gobject = VC_small,
sdimx_stepsize = 300,
sdimy_stepsize = 300,
minimum_padding = 50)
showGrids(VC_small)
spatPlot(gobject = VC_small, show_grid = T, point_size = 1.5)
## 8. spatial network ####
plotStatDelaunayNetwork(gobject = VC_small, maximum_distance = 400)
VC_small = createSpatialNetwork(gobject = VC_small, minimum_k = 2, maximum_distance_delaunay = 400)
VC_small = createSpatialNetwork(gobject = VC_small, minimum_k = 2, method = 'kNN', k = 10)
showNetworks(VC_small)
spatPlot(gobject = VC_small, show_network = T,
network_color = 'blue', spatial_network_name = 'Delaunay_network',
point_size = 2.5, cell_color = 'leiden_clus')
spatPlot(gobject = VC_small, show_network = T,
network_color = 'blue', spatial_network_name = 'kNN_network',
point_size = 2.5, cell_color = 'leiden_clus')
## 9. spatial genes ####
km_spatialgenes = binSpect(VC_small)
spatGenePlot(VC_small, expression_values = 'scaled', genes = km_spatialgenes[1:6]$genes,
point_shape = 'border', point_border_stroke = 0.1,
show_network = F, network_color = 'lightgrey', point_size = 2.5,
cow_n_col = 2)
## combined approach ##
km_spatialgenes[p.value <= 0.05]
km_spatialgenes1 = km_spatialgenes
km_spatialgenes1[, k := 1]
km_spatialgenes2 = km_spatialgenes
km_spatialgenes2[, k := 2]
km_spatialgenes3 = km_spatialgenes
km_spatialgenes3[, k := 3]
km_spatialgenes_tot = data.table::rbindlist(l = list(km_spatialgenes1, km_spatialgenes2, km_spatialgenes3))
comb_km = km_spatialgenes_tot[, sum(log(p.value)), by = genes]
comb_km[, V1 := V1*-2]
comb_km[, p.val := pchisq(q = V1, df = 2*3, log.p = F, lower.tail = F)]
pchisq(q = 1, df = 2*3, log.p = T)
pchisq(q = 6, df = 2*3, log.p = T)
km_spatialgenes[p.value < 0.01 ]
comb_km[p.val < 0.01]
comb_km
## simulations ##
# create smaller object
set.seed(1234)
sample_genes = sample(VC_small@gene_ID, 100)
VC_small_subset = subsetGiotto(VC_small, gene_ids = sample_genes)
VC_small_subset <- filterGiotto(gobject = VC_small_subset, expression_threshold = 0.5, gene_det_in_min_cells = 20, min_det_genes_per_cell = 0)
VC_small_subset <- normalizeGiotto(gobject = VC_small_subset, scalefactor = 6000, verbose = T)
# pattern 1: bottom right stripe
pattern = VC_small_subset@spatial_locs[sdimx > 1500 & sdimy < -500]
pattern_ids = pattern$cell_ID
selected_genes = sample_genes[1:4]
my_dir = '/Users/rubendries/Dropbox (Personal)/Projects/GC_lab/Ruben_Dries/190225_spatial_package/Results/Paper_revisions/NatMethod_revisions/Revision_1/Spatial_sim_tests/right_lower_patch/'
right_patch_pattern = runPatternSimulation(gobject = VC_small_subset,
pattern_name = 'right_patch',
pattern_cell_ids = pattern_ids,
gene_names = selected_genes,
spatial_probs = c(0.5, 0.8, 0.9, 0.95, 0.99, 1),
reps = 6,
save_plot = T,
max_col = 2,
save_dir = my_dir)
# pattern 2: central patch
pattern = VC_small_subset@spatial_locs[sdimx > 750 & sdimx < 1250 & sdimy > -1250 & sdimy < -750]
pattern_ids = pattern$cell_ID
selected_genes = sample_genes[1:4]
my_dir = '/Users/rubendries/Dropbox (Personal)/Projects/GC_lab/Ruben_Dries/190225_spatial_package/Results/Paper_revisions/NatMethod_revisions/Revision_1/Spatial_sim_tests/center_patch/'
center_patch_pattern = runPatternSimulation(gobject = VC_small_subset,
pattern_name = 'center_patch',
pattern_cell_ids = pattern_ids,
gene_names = selected_genes,
spatial_probs = c(0.5, 0.8, 0.9, 0.95, 0.99, 1),
reps = 6,
save_plot = T,
max_col = 2,
save_dir = my_dir)
# pattern 3: stripe
pattern = VC_small_subset@spatial_locs[sdimx > 800 & sdimx < 1200]
pattern_ids = pattern$cell_ID
selected_genes = sample_genes[1:4]
my_dir = '/Users/rubendries/Dropbox (Personal)/Projects/GC_lab/Ruben_Dries/190225_spatial_package/Results/Paper_revisions/NatMethod_revisions/Revision_1/Spatial_sim_tests/stripe/'
center_patch_pattern = runPatternSimulation(gobject = VC_small_subset,
pattern_name = 'stripe',
pattern_cell_ids = pattern_ids,
gene_names = selected_genes,
spatial_probs = c(0.5, 0.8, 0.9, 0.95, 0.99, 1),
reps = 6,
save_plot = T,
max_col = 2,
save_dir = my_dir)
rank_spatialgenes = binSpect(VC_small, bin_method = 'rank')
spatGenePlot(VC_small, expression_values = 'scaled', genes = rank_spatialgenes[1:6]$genes,
point_shape = 'border', point_border_stroke = 0.1,
show_network = F, network_color = 'lightgrey', point_size = 2.5,
cow_n_col = 2)
silh_spatialgenes = silhouetteRank(gobject = VC_small) # TODO: suppress print output
spatGenePlot(VC_small, expression_values = 'scaled', genes = silh_spatialgenes[1:6]$genes,
point_shape = 'border', point_border_stroke = 0.1,
show_network = F, network_color = 'lightgrey', point_size = 2.5,
cow_n_col = 2)
## 10. spatial co-expression patterns ####
ext_spatial_genes = km_spatialgenes[1:500]$genes
spat_cor_netw_DT = detectSpatialCorGenes(VC_small,
method = 'network', spatial_network_name = 'Delaunay_network',
subset_genes = ext_spatial_genes)
spat_cor_netw_DT = clusterSpatialCorGenes(spat_cor_netw_DT, name = 'spat_netw_clus', k = 8)
heatmSpatialCorGenes(VC_small, spatCorObject = spat_cor_netw_DT, use_clus_name = 'spat_netw_clus')
netw_ranks = rankSpatialCorGroups(VC_small, spatCorObject = spat_cor_netw_DT, use_clus_name = 'spat_netw_clus')
top_netw_spat_cluster = showSpatialCorGenes(spat_cor_netw_DT, use_clus_name = 'spat_netw_clus',
selected_clusters = 6, show_top_genes = 1)
cluster_genes_DT = showSpatialCorGenes(spat_cor_netw_DT, use_clus_name = 'spat_netw_clus', show_top_genes = 1)
cluster_genes = cluster_genes_DT$clus; names(cluster_genes) = cluster_genes_DT$gene_ID
VC_small = createMetagenes(VC_small, gene_clusters = cluster_genes, name = 'cluster_metagene')
spatCellPlot(VC_small,
spat_enr_names = 'cluster_metagene',
cell_annotation_values = netw_ranks$clusters,
point_size = 1.5, cow_n_col = 3)
## 11. spatial HMRF domains ####
hmrf_folder = paste0(temp_dir,'/','11_HMRF/')
if(!file.exists(hmrf_folder)) dir.create(hmrf_folder, recursive = T)
# perform hmrf
my_spatial_genes = km_spatialgenes[1:100]$genes
HMRF_spatial_genes = doHMRF(gobject = VC_small,
expression_values = 'scaled',
spatial_genes = my_spatial_genes,
spatial_network_name = 'Delaunay_network',
k = 9,
betas = c(28,2,2),
output_folder = paste0(hmrf_folder, '/', 'Spatial_genes/SG_top100_k9_scaled'))
# check and select hmrf
for(i in seq(28, 30, by = 2)) {
viewHMRFresults2D(gobject = VC_small,
HMRFoutput = HMRF_spatial_genes,
k = 9, betas_to_view = i,
point_size = 2)
}
VC_small = addHMRF(gobject = VC_small,
HMRFoutput = HMRF_spatial_genes,
k = 9, betas_to_add = c(28),
hmrf_name = 'HMRF')
giotto_colors = Giotto:::getDistinctColors(9)
names(giotto_colors) = 1:9
spatPlot(gobject = VC_small, cell_color = 'HMRF_k9_b.28',
point_size = 3, coord_fix_ratio = 1, cell_color_code = giotto_colors)
## 12. cell neighborhood: cell-type/cell-type interactions ####
set.seed(seed = 2841)
cell_proximities = cellProximityEnrichment(gobject = VC_small,
cluster_column = 'cell_types',
spatial_network_name = 'Delaunay_network',
adjust_method = 'fdr',
number_of_simulations = 1000)
# barplot
cellProximityBarplot(gobject = VC_small, CPscore = cell_proximities,
min_orig_ints = 1, min_sim_ints = 1, p_val = 0.25)
## heatmap
cellProximityHeatmap(gobject = VC_small, CPscore = cell_proximities, order_cell_types = T, scale = T,
color_breaks = c(-1.5, 0, 1.5), color_names = c('blue', 'white', 'red'))
# network
cellProximityNetwork(gobject = VC_small, CPscore = cell_proximities, remove_self_edges = T, only_show_enrichment_edges = T)
# network with self-edges
cellProximityNetwork(gobject = VC_small, CPscore = cell_proximities,
remove_self_edges = F, self_loop_strength = 0.3,
only_show_enrichment_edges = F,
rescale_edge_weights = T,
node_size = 8,
edge_weight_range_depletion = c(1, 2),
edge_weight_range_enrichment = c(2,5))
## visualization of specific cell types
# Option 1
spec_interaction = "cell D--cell F"
cellProximitySpatPlot2D(gobject = VC_small,
interaction_name = spec_interaction,
show_network = T,
cluster_column = 'cell_types',
cell_color = 'cell_types',
cell_color_code = c('cell D' = 'lightblue', 'cell F' = 'red'),
point_size_select = 4, point_size_other = 2)
# Option 2: create additional metadata
VC_small = addCellIntMetadata(VC_small,
spatial_network = 'Delaunay_network',
cluster_column = 'cell_types',
cell_interaction = spec_interaction,
name = 'D_F_interactions')
spatPlot(VC_small, cell_color = 'D_F_interactions', legend_symbol_size = 3,
select_cell_groups = c('other_cell D', 'other_cell F', 'select_cell D', 'select_cell F'))
### 13. cell neighborhood: interaction changed genes ####
## select top 25th highest expressing genes
gene_metadata = fDataDT(VC_small)
plot(gene_metadata$nr_cells, gene_metadata$mean_expr)
plot(gene_metadata$nr_cells, gene_metadata$mean_expr_det)
quantile(gene_metadata$mean_expr_det)
high_expressed_genes = gene_metadata[mean_expr_det > 4]$gene_ID
## identify genes that are associated with proximity to other cell types
CPGscoresHighGenes = findCPG(gobject = VC_small,
selected_genes = high_expressed_genes,
spatial_network_name = 'Delaunay_network',
cluster_column = 'cell_types',
diff_test = 'permutation',
adjust_method = 'fdr',
nr_permutations = 500,
do_parallel = T, cores = 2)
## visualize all genes
plotCellProximityGenes(VC_small, cpgObject = CPGscoresHighGenes, method = 'dotplot')
## filter genes
CPGscoresFilt = filterCPG(CPGscoresHighGenes, min_cells = 2, min_int_cells = 2, min_fdr = 0.1,
min_spat_diff = 0.1, min_log2_fc = 0.1, min_zscore = 1)
## visualize subset of interaction changed genes (ICGs)
ICG_genes = c('Cpne2', 'Scg3', 'Cmtm3', 'Cplx1', 'Lingo1')
ICG_genes_types = c('cell E', 'cell D', 'cell D', 'cell G', 'cell E')
names(ICG_genes) = ICG_genes_types
plotICG(gobject = VC_small,
cpgObject = CPGscoresHighGenes,
source_type = 'cell A',
source_markers = c('Csf1r', 'Laptm5'),
ICG_genes = ICG_genes)
##### 14. cell neighborhood: ligand-receptor cell-cell communication ####
LR_data = data.table::fread(system.file("extdata", "mouse_ligand_receptors.txt", package = 'Giotto'))
LR_data[, ligand_det := ifelse(mouseLigand %in% VC_small@gene_ID, T, F)]
LR_data[, receptor_det := ifelse(mouseReceptor %in% VC_small@gene_ID, T, F)]
LR_data_det = LR_data[ligand_det == T & receptor_det == T]
select_ligands = LR_data_det$mouseLigand
select_receptors = LR_data_det$mouseReceptor
## get statistical significance of gene pair expression changes based on expression ##
expr_only_scores = exprCellCellcom(gobject = VC_small,
cluster_column = 'cell_types',
random_iter = 500,
gene_set_1 = select_ligands,
gene_set_2 = select_receptors)
## get statistical significance of gene pair expression changes upon cell-cell interaction
spatial_all_scores = spatCellCellcom(VC_small,
spatial_network_name = 'Delaunay_network',
cluster_column = 'cell_types',
random_iter = 500,
gene_set_1 = select_ligands,
gene_set_2 = select_receptors,
adjust_method = 'fdr',
do_parallel = T,
cores = 4,
verbose = 'none')
## * plot communication scores ####
## select top LR ##
selected_spat = spatial_all_scores[p.adj <= 0.5 & abs(log2fc) > 0.1 & lig_nr >= 2 & rec_nr >= 2]
data.table::setorder(selected_spat, -PI)
top_LR_ints = unique(selected_spat[order(-abs(PI))]$LR_comb)[1:33]
top_LR_cell_ints = unique(selected_spat[order(-abs(PI))]$LR_cell_comb)[1:33]
plotCCcomHeatmap(gobject = VC_small,
comScores = spatial_all_scores,
selected_LR = top_LR_ints,
selected_cell_LR = top_LR_cell_ints,
show = 'LR_expr')
plotCCcomDotplot(gobject = VC_small,
comScores = spatial_all_scores,
selected_LR = top_LR_ints,
selected_cell_LR = top_LR_cell_ints,
cluster_on = 'PI')
## * spatial vs rank ####
comb_comm = combCCcom(spatialCC = spatial_all_scores,
exprCC = expr_only_scores)
# top differential activity levels for ligand receptor pairs
plotRankSpatvsExpr(gobject = VC_small,
comb_comm,
expr_rnk_column = 'exprPI_rnk',
spat_rnk_column = 'spatPI_rnk',
midpoint = 10)
## * recovery ####
## predict maximum differential activity
plotRecovery(gobject = VC_small,
comb_comm,
expr_rnk_column = 'exprPI_rnk',
spat_rnk_column = 'spatPI_rnk',
ground_truth = 'spatial')
### 15. export Giotto Analyzer to Viewer ####
viewer_folder = paste0(temp_dir, '/', 'Mouse_cortex_viewer')
# select annotations, reductions and expression values to view in Giotto Viewer
exportGiottoViewer(gobject = VC_small, output_directory = viewer_folder,
factor_annotations = c('cell_types',
'leiden_clus',
'HMRF_k9_b.28'),
numeric_annotations = 'total_expr',
dim_reductions = c('umap'),
dim_reduction_names = c('umap'),
expression_values = 'scaled',
expression_rounding = 3,
overwrite_dir = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.