#' Create a shinycell config data.table
#'
#' Create a shinycell config data.table containing (i) the single-cell
#' metadata to display on the Shiny app, (ii) ordering of factors /
#' categories of categorical metadata and (iii) colour palettes associated
#' with each metadata.
#'
#' @param obj input single-cell object for Seurat (v3+) / SingleCellExperiment
#' data or input file path for h5ad / loom files
#' @param meta.to.include columns to include from the single-cell metadata.
#' Default is \code{NA}, which is to use all columns. Users can specify
#' the columns to include, which must match one of the following:
#' \itemize{
#' \item{Seurat objects}: column names in \code{seu@meta.data}
#' i.e. \code{colnames(seu@meta.data)}
#' \item{SCE objects}: column names in \code{sce@colData}
#' i.e. \code{colnames(sce@colData)}
#' \item{h5ad files}: column names in \code{h5ad.obs}
#' i.e. \code{h5ad.obs.columns.values}
#' \item{loom files}: column names in \code{loom/col_attrs}
#' i.e. \code{loom/col_attrs.names}
#' }
#' @param legendCols maximum number of columns allowed when displaying the
#' legends of categorical metadata
#' @param maxLevels maximum number of levels allowed for categorical metadata.
#' Metadata with nlevels > maxLevels will be discarded automatically
#'
#' @return shinycell config data.table
#'
#' @author John F. Ouyang
#'
#' @import data.table reticulate hdf5r
#'
#' @examples
#' scConf = createConfig(obj)
#'
#' @export
createConfig <- function(obj, meta.to.include = NA, legendCols = 4,
maxLevels = 50){
# Extract corresponding metadata
drExist = TRUE
if(class(obj)[1] == "Seurat"){
# Seurat Object
objMeta = obj@meta.data
if(length(names(obj@reductions)) == 0){drExist = FALSE}
} else if (class(obj)[1] == "SingleCellExperiment"){
# SCE Object
objMeta = SingleCellExperiment::colData(obj)
if(length(SingleCellExperiment::reducedDimNames(obj)) == 0){drExist=FALSE}
} else if (tolower(tools::file_ext(obj)) == "h5ad"){
# h5ad file
ad <- import("anndata", convert = FALSE)
inpH5 = ad$read_h5ad(obj)
objMeta = data.frame(py_to_r(inpH5$obs$values))
rownames(objMeta) = py_to_r(inpH5$obs_names$values)
colnames(objMeta) = py_to_r(inpH5$obs$columns$values)
for(i in colnames(objMeta)){
objMeta[[i]] = unlist(objMeta[[i]]) # unlist and refactor
if(as.character(inpH5$obs[i]$dtype) == "category"){
objMeta[[i]] = factor(objMeta[[i]], levels =
py_to_r(inpH5$obs[i]$cat$categories$values))
}
}
if(length(py_to_r(inpH5$obsm_keys())) == 0){drExist = FALSE}
} else if (tolower(tools::file_ext(obj)) == "loom"){
# loom file
inpLM = hdf5r::H5File$new(obj, mode = "r+")
cellIdx = which(inpLM[["col_attrs"]]$names == "CellID")
if(length(cellIdx) != 1){
stop("CellID attribute not found in col_attrs in loom file!")
}
objMeta = data.frame(row.names = inpLM[["col_attrs"]][["CellID"]]$read())
for(i in inpLM[["col_attrs"]]$names[-cellIdx]){
tmp = inpLM[["col_attrs"]][[i]]$read()
if(length(tmp) == nrow(objMeta)){objMeta[[i]] = tmp}
}
nDR = inpLM[["col_attrs"]]$names[
grep("pca|tsne|umap", inpLM[["col_attrs"]]$names, ignore.case = TRUE)]
if(length(nDR) == 0){drExist = FALSE}
inpLM$close_all()
} else {
stop("Only Seurat/SCE objects or h5ad/loom file paths are accepted!")
}
if(!drExist){
stop(paste0("ShinyCell did not detect any dimension reduction data \n",
" e.g. umap / tsne. Has any analysis been performed?"))
}
# Checks and get list of metadata to include
if(is.na(meta.to.include[1])){meta.to.include = colnames(objMeta)}
if(length(meta.to.include) < 2){stop("At least 2 metadata is required!")}
# Start making config data.table
scConf = data.table()
for(iMeta in meta.to.include){
tmpConf = data.table(ID = iMeta, UI = iMeta, fID = NA, fUI = NA,
fCL = NA, fRow = NA, default = 0, grp = FALSE)
# Convert to factors if metadata contains characters
if(is.character(objMeta[[iMeta]])){
objMeta[[iMeta]] = factor(objMeta[[iMeta]])
}
# Additional preprocessing for categorical metadata
nLevels = nlevels(objMeta[[iMeta]])
if(nLevels <= maxLevels){
if(nLevels >= 2){
tmpConf$fID = paste0(levels(objMeta[[iMeta]]), collapse = "|")
tmpConf$fUI = tmpConf$fID
tmpConf$fCL = paste0(colorRampPalette(brewer.pal(12, "Paired"))(nLevels),
collapse = "|")
tmpConf$fRow = ceiling(nLevels / legendCols)
tmpConf$grp = TRUE
} else if(nLevels == 1){
tmpConf$fID = levels(objMeta[[iMeta]])
tmpConf$fUI = tmpConf$fID
tmpConf$fCL = "black"
tmpConf$fRow = 1
}
scConf = rbindlist(list(scConf, tmpConf))
}
}
# Set defaults
def1 = grep("ident|library", scConf$ID, ignore.case = TRUE)[1]
def2 = grep("clust", scConf$ID, ignore.case = TRUE)
def2 = setdiff(def2, def1)[1]
if(is.na(def1)){def1 = setdiff(c(1,2), def2)[1]}
if(is.na(def2)){def2 = setdiff(c(1,2), def1)[1]}
scConf[def1]$default = 1
scConf[def2]$default = 2
# STOP if there is no single multi-level covariate
if(nrow(scConf[grp == TRUE]) == 0){
stop(paste0("ShinyCell did not detect any multi-group cell metadata \n",
" e.g. library / cluster. Has any analysis been performed?"))
}
return(scConf)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.