optimal_normal_generic: Generic function for optimizing normally distributed...

View source: R/optimal_normal_generic.R

optimal_normal_genericR Documentation

Generic function for optimizing normally distributed endpoints

Description

Generic function for optimizing normally distributed endpoints

Usage

optimal_normal_generic(
  w,
  Delta1,
  Delta2,
  in1,
  in2,
  a,
  b,
  n2min,
  n2max,
  stepn2,
  kappamin,
  kappamax,
  stepkappa,
  alpha,
  beta,
  c2,
  c3,
  c02,
  c03,
  K = Inf,
  N = Inf,
  S = -Inf,
  steps1 = 0,
  stepm1 = 0.5,
  stepl1 = 0.8,
  b1,
  b2,
  b3,
  gamma = 0,
  fixed = FALSE,
  num_cl = 1
)

Arguments

w

weight for mixture prior distribution

Delta1

assumed true prior treatment effect measured as the standardized difference in means, see here for details

Delta2

assumed true prior treatment effect measured as the standardized difference in means, see here for details

in1

amount of information for Delta1 in terms of sample size, see here for details

in2

amount of information for Delta2 in terms of sample size, see here for details

a

lower boundary for the truncation of the prior distribution

b

upper boundary for the truncation of the prior distribution

n2min

minimal total sample size for phase II; must be an even number

n2max

maximal total sample size for phase II, must be an even number

stepn2

step size for the optimization over n2; must be an even number

kappamin

minimal threshold value kappa for the go/no-go decision rule

kappamax

maximal threshold value kappa for the go/no-go decision rule

stepkappa

step size for the optimization over the threshold value kappa

alpha

one-sided significance level

beta

type II error rate; i.e. 1 - beta is the power for calculation of the sample size for phase III

c2

variable per-patient cost for phase II in 10^5 $

c3

variable per-patient cost for phase III in 10^5 $

c02

fixed cost for phase II in 10^5 $

c03

fixed cost for phase III in 10^5 $

K

constraint on the costs of the program, default: Inf, e.g. no constraint

N

constraint on the total expected sample size of the program, default: Inf, e.g. no constraint

S

constraint on the expected probability of a successful program, default: -Inf, e.g. no constraint

steps1

lower boundary for effect size category "small", default: 0

stepm1

lower boundary for effect size category "medium" = upper boundary for effect size category "small" default: 0.5

stepl1

lower boundary for effect size category "large" = upper boundary for effect size category "medium", default: 0.8

b1

expected gain for effect size category "small" in 10^5 $

b2

expected gain for effect size category "medium" in 10^5 $

b3

expected gain for effect size category "large" in 10^5 $

gamma

to model different populations in phase II and III choose gamma != 0, default: 0, see here for details

fixed

choose if true treatment effects are fixed or following a prior distribution, if TRUE Delta1 is used as fixed effect

num_cl

number of clusters used for parallel computing, default: 1


Sterniii3/drugdevelopR documentation built on Jan. 26, 2024, 6:17 a.m.