R/Report.R

Defines functions ReportPreySpeciesCategoryCatch filterTable WriteStratumPolygon ReportSpeciesCategoryCatch getReportFunctionElementByFunctionName hasX getReportFunctionAlias hasSpecificationParameter hasWeightingParameter getReportFunctionVariableName getReportFunctionOutputNames aggregateBaselineDataOneTableSingleFunction aggregateBaselineDataOneTable ReportQuantity ReportDensity ReportSuperIndividuals

Documented in aggregateBaselineDataOneTable aggregateBaselineDataOneTableSingleFunction filterTable getReportFunctionVariableName ReportDensity ReportPreySpeciesCategoryCatch ReportQuantity ReportSpeciesCategoryCatch ReportSuperIndividuals WriteStratumPolygon

##################################################
##################################################
#' Report SuperIndividualsData
#' 
#' Reports the sum, mean or other functions on a variable of the \code{\link{SuperIndividualsData}}.
#' 
#' @inheritParams ModelData
#' @inheritParams general_report_arguments
#'
#' @details This function is useful to, e.g, sum Biomass for each SpeciesCategory and IndividualTotalLength, or average IndividualTotalLength for each IndividualAge and Stratum.
#' 
#' @return
#' A \code{\link{ReportSuperIndividualsData}} object.
#' 
#' @export
#' 
ReportSuperIndividuals <- function(
    SuperIndividualsData, 
    TargetVariable = character(), 
    TargetVariableUnit = character(), 
    ReportFunction = getReportFunctions(use = "Baseline"), 
    GroupingVariables = character(), 
    InformationVariables = character(), 
    Filter = character(), 
    RemoveMissingValues = FALSE, 
    WeightingVariable = character(), 
    ConditionOperator = character(), 
    ConditionValue = character(), 
    FractionOverVariable = character()
) 
{
    # Error if TargetVariable is not given:
    if(!length(TargetVariable)) {
        stop("TargetVariable must be given!")
    }
    
    # Get the ReportFunction:
    ReportFunction <- RstoxData::match_arg_informative(ReportFunction)
    
    # Issue a warning if RemoveMissingValues = TRUE:
    if(isTRUE(RemoveMissingValues) && any(is.na(SuperIndividualsData[[TargetVariable]]))) {
        warning(getRstoxBaseDefinitions("RemoveMissingValuesWarning")(TargetVariable))
    }
    
    SuperIndividualsData[[TargetVariable]] <- setUnitRstoxBase(
        SuperIndividualsData[[TargetVariable]], 
        dataType =  "SuperIndividualsData", 
        variableName = TargetVariable, 
        unit = TargetVariableUnit
    )
    
    output <- aggregateBaselineDataOneTable(
        stoxData = SuperIndividualsData, 
        TargetVariable = TargetVariable, 
        ReportFunction = ReportFunction, 
        GroupingVariables = GroupingVariables, 
        InformationVariables = InformationVariables, 
        na.rm = RemoveMissingValues, 
        Specification = list(
            WeightingVariable = WeightingVariable,
            ConditionOperator = ConditionOperator, 
            ConditionValue = ConditionValue, 
            FractionOverVariable = FractionOverVariable
        )
    )
    
    if(RstoxData::hasUnit(SuperIndividualsData[[TargetVariable]], property = "shortname")) {
        unit <- RstoxData::getUnit(SuperIndividualsData[[TargetVariable]], property = "shortname")
        output <- cbind(output, Unit = unit)
    }
    
    output <- filterTable(output, filter = Filter)
    
    return(output)
}


##################################################
##################################################
#' Report DensityData
#' 
#' Reports the sum, mean or other functions on a variable of the \code{\link{DensityData}}.
#' 
#' @inheritParams ModelData
#' @inheritParams general_report_arguments
#' @param DensityUnit The unit to use for the \code{Density}. Run the following in R for possible units: subset(RstoxData::StoxUnits, quantity == "area_number_density", select = "shortname").
#' 
#' @return
#' A \code{\link{ReportDensityData}} object.
#' 
#' @export
#' 
ReportDensity <- function(
    DensityData, 
    DensityUnit = character(), 
    #TargetVariable = character(), 
    ReportFunction = getReportFunctions(use = "Baseline"), 
    GroupingVariables = character(), 
    InformationVariables = character(), 
    Filter = character(), 
    RemoveMissingValues = FALSE, 
    WeightingVariable = character(), 
    ConditionOperator = character(), 
    ConditionValue = character(), 
    FractionOverVariable = character()
) 
{
    # Only Density is relevant here:
    TargetVariable <- "Density"
    
    # Get the ReportFunction:
    ReportFunction <- RstoxData::match_arg_informative(ReportFunction)
    
    # Issue a warning if RemoveMissingValues = TRUE:
    if(isTRUE(RemoveMissingValues) && any(is.na(DensityData$Data[[TargetVariable]]))) {
        warning(getRstoxBaseDefinitions("RemoveMissingValuesWarning")(TargetVariable))
    }
    
    DensityData$Data[[TargetVariable]] <- setUnitRstoxBase(
        DensityData$Data[[TargetVariable]], 
        dataType =  "DensityData", 
        variableName = TargetVariable, 
        unit = DensityUnit
    )
    
    output <- aggregateBaselineDataOneTable(
        stoxData = DensityData$Data, 
        TargetVariable = TargetVariable, 
        ReportFunction = ReportFunction, 
        GroupingVariables = GroupingVariables, 
        InformationVariables = InformationVariables, 
        na.rm = RemoveMissingValues, 
        Specification = list(
            WeightingVariable = WeightingVariable,
            ConditionOperator = ConditionOperator, 
            ConditionValue = ConditionValue, 
            FractionOverVariable = FractionOverVariable
        )
    )
    
    if(RstoxData::hasUnit(DensityData$Data[[TargetVariable]], property = "shortname")) {
        unit <- RstoxData::getUnit(DensityData$Data[[TargetVariable]], property = "shortname")
        output <- cbind(output, Unit = unit)
    }
    
    output <- filterTable(output, filter = Filter)
    
    return(output)
}


##################################################
##################################################
#' Report QuantityData
#' 
#' Reports the sum, mean or other functions on a variable of the \code{\link{QuantityData}}.
#' 
#' @inheritParams ModelData
#' @inheritParams general_report_arguments
#' 
#' @return
#' A \code{\link{ReportQuantityData}} object.
#' 
#' @export
#' 
ReportQuantity <- function(
    QuantityData, 
    TargetVariable = c("Abundance", "Biomass"), 
    TargetVariableUnit = character(), 
    ReportFunction = getReportFunctions(use = "Baseline"), 
    GroupingVariables = character(), 
    InformationVariables = character(), 
    Filter = character(), 
    RemoveMissingValues = FALSE, 
    WeightingVariable = character(), 
    ConditionOperator = character(), 
    ConditionValue = character(), 
    FractionOverVariable = character()
) 
{
    # Issue a warning if RemoveMissingValues = TRUE:
    if(isTRUE(RemoveMissingValues) && any(is.na(QuantityData$Data[[TargetVariable]]))) {
        warning(getRstoxBaseDefinitions("RemoveMissingValuesWarning")(TargetVariable))
    }
    
    # Get the ReportFunction:
    ReportFunction <- RstoxData::match_arg_informative(ReportFunction)
    
    QuantityData$Data[[TargetVariable]] <- setUnitRstoxBase(
        QuantityData$Data[[TargetVariable]], 
        dataType =  "QuantityData", 
        variableName = TargetVariable, 
        unit = TargetVariableUnit
    )
    
    output <- aggregateBaselineDataOneTable(
        stoxData = QuantityData$Data, 
        TargetVariable = TargetVariable, 
        ReportFunction = ReportFunction, 
        GroupingVariables = GroupingVariables, 
        InformationVariables = InformationVariables, 
        na.rm = RemoveMissingValues, 
        Specification = list(
            WeightingVariable = WeightingVariable,
            ConditionOperator = ConditionOperator, 
            ConditionValue = ConditionValue, 
            FractionOverVariable = FractionOverVariable
        )
    )
    
    if(RstoxData::hasUnit(QuantityData$Data[[TargetVariable]], property = "shortname")) {
        unit <- RstoxData::getUnit(QuantityData$Data[[TargetVariable]], property = "shortname")
        output <- cbind(output, Unit = unit)
    }
    
    output <- filterTable(output, filter = Filter)
    
    return(output)
}


##################################################
#' Function to aggregate baseline data
#' 
#' @param stoxData Output from any StoX function.
#' @param subTable The name of the sub table to aggregate on, if \code{stoxData} is a list of tables.
#' @inheritParams general_report_arguments
#' @param na.rm Used in the function specified by \code{ReportFunction}.
#' @param padWithZerosOn Character vector giving the variables for which missing values should be padded with zeros. This is used particularly for bootstrapping, where a fish length missing in a bootstrap run should be considered as samples with zero individuals, and not missing, so that summary statistics end up taking all bootstrap replicates into account (if not a mean would be overestimated). When padWithZerosOn has positive length, padding with zeros is applied to this variable and to the \code{GroupingVariables}. 
#' @param Specification A named list of specification parameters used in the \code{ReportFunction}.
#' @param uniqueGroupingVariablesToKeep A data.table holding unique combinations to extract from the data, used by RstoxFramework::ReportBootstrap() to discard combinations of the grouping variables what do not exist in the data. Such combinations are introduced with the CJ operation when padWithZerosOn is given.
#'
#' @return
#' An aggregated version of the input \code{stoxData}.
#' 
#' @seealso 
#' \code{\link{ReportSuperIndividuals}}
#' 
#' @export
#' 
aggregateBaselineDataOneTable <- function(
    stoxData, 
    subTable = character(), 
    TargetVariable, 
    ReportFunction = getReportFunctions(), 
    GroupingVariables = character(), 
    InformationVariables = character(), 
    na.rm = FALSE, 
    padWithZerosOn = character(), 
    Specification = list(), 
    uniqueGroupingVariablesToKeep = NULL
)
{
    if(!length(stoxData)) {
        return(stoxData)
    }
    
    if(startsWith(ReportFunction, "fraction")) {
        # Get the FractionOverVariable:
        if(! "FractionOverVariable"  %in% names(Specification)) {
            stop("The parameter FractionOverVariable must be given.")
        }
        if(! Specification$FractionOverVariable %in% GroupingVariables) {
            stop("FractionOverVariable must be one of the GroupingVariables.")
        }
        
        # Set the grouping variables to use in the denominator and remove the FractionOverVariable so that only the conditions are left:
        denominatorGroupingVariables <- setdiff(GroupingVariables, Specification$FractionOverVariable)
        Specification$FractionOverVariable <- NULL
        
        fun <- getReportFunctionAlias(ReportFunction)
        
        
        
        numerator <- aggregateBaselineDataOneTableSingleFunction(
            stoxData = stoxData, 
            subTable = subTable, 
            TargetVariable = TargetVariable, 
            ReportFunction = fun, 
            GroupingVariables = GroupingVariables, 
            InformationVariables = InformationVariables, 
            na.rm = na.rm, 
            padWithZerosOn = padWithZerosOn, 
            Specification = Specification, 
            uniqueGroupingVariablesToKeep = uniqueGroupingVariablesToKeep
        )
        
        
        denominator <- aggregateBaselineDataOneTableSingleFunction(
            stoxData = stoxData, 
            subTable = subTable, 
            TargetVariable = TargetVariable, 
            ReportFunction = fun, 
            GroupingVariables = denominatorGroupingVariables, 
            InformationVariables = InformationVariables, 
            # Changed this to TRUE, since we may get all NAs unless, and the important thing is to keep NAs in the numerator:
            #na.rm = na.rm, 
            na.rm = TRUE, 
            padWithZerosOn = padWithZerosOn, 
            Specification = Specification, 
            uniqueGroupingVariablesToKeep = uniqueGroupingVariablesToKeep
        )
        
        # Rename the resulting column and merge to make the fraction:
        data.table::setnames(numerator, ncol(numerator),  "temporary_numerator_column_name")
        data.table::setnames(denominator, ncol(denominator),  "temporary_denominator_column_name")
        
        outputData <- RstoxData::mergeByIntersect(numerator, denominator, all = TRUE)
        
        var <- paste(TargetVariable, ReportFunction,  sep = "_")
        outputData[, eval(var) := temporary_numerator_column_name / temporary_denominator_column_name]
        
        # Remove the temporary columns:
        removeColumnsByReference(
            data = outputData, 
            toRemove = c("temporary_numerator_column_name", "temporary_denominator_column_name")
        )
        
        
    }
    else {
        outputData <- aggregateBaselineDataOneTableSingleFunction(
            stoxData = stoxData, 
            subTable = subTable, 
            TargetVariable = TargetVariable, 
            ReportFunction = ReportFunction, 
            GroupingVariables = GroupingVariables, 
            InformationVariables = InformationVariables, 
            na.rm = na.rm, 
            padWithZerosOn = padWithZerosOn, 
            Specification = Specification, 
            uniqueGroupingVariablesToKeep = uniqueGroupingVariablesToKeep
        )
    }
    
    
    return(outputData)
}



##################################################
#' Function to aggregate baseline data
#' 
#' @inheritParams aggregateBaselineDataOneTable
#'
#' @return
#' An aggregated version of the input \code{stoxData}.
#' 
#' @seealso 
#' \code{\link{ReportSuperIndividuals}}
#' 
aggregateBaselineDataOneTableSingleFunction <- function(
    stoxData, 
    subTable = character(), 
    TargetVariable, 
    ReportFunction = getReportFunctions(), 
    GroupingVariables = character(), 
    InformationVariables = character(), 
    na.rm = FALSE, 
    padWithZerosOn = character(), 
    Specification = list(), 
    uniqueGroupingVariablesToKeep = NULL
)
{
    if(!length(stoxData)) {
        return(stoxData)
    }
    
    # Get the aggregation function:
    ReportFunction <- RstoxData::match_arg_informative(ReportFunction)
    
    # Extract the sub table:
    if(length(subTable)) {
        subTable <- strsplit(subTable, "/")
        for(tableName in subTable) {
            stoxData <- stoxData[[tableName]]
            # Free the memory of the large object:
            #gc()
            
        }
    }
    
    
    # Add a CJ operation here like in StoX 2.7 (function reportQuantityAtLevel). This needs an option, so that it is only used across bootstrap iterations:
    if(length(padWithZerosOn)) {
        # Attempt to generalize the creation of the grid and filling in the data, intended for use here and for an ExpandNASC function, but the latter was abandoned, so no need to generalize:
        ### dimensionVariables <- c(GroupingVariables, padWithZerosOn)
        ### informationVariables = setdiff(names(stoxData), c(dimensionVariables, TargetVariable))
        ### stoxData2 <- data.table::copy(stoxData)
        ### expandStoxData(
        ###     stoxData = stoxData2, 
        ###     dimensionVariables = dimensionVariables, 
        ###     targetVariable = TargetVariable, 
        ###     informationVariables = informationVariables
        ### )
        
        # Add NAs for missing combinations of the GroupingVariables:
        #stoxData <- stoxData[do.call(CJ, lapply(GroupingVariables, unique)), allow.cartesian = TRUE]
        paddingVariables <- c(GroupingVariables, padWithZerosOn)
        grid <- do.call(data.table::CJ, lapply(stoxData[, ..paddingVariables], unique))
        grid$index_ <- seq.int(nrow(grid))
        
        # Save indices in the grid at which there are NAs in the data:
        arePresent <- grid[stoxData[, ..paddingVariables], on = paddingVariables]$index_
        areNA <- arePresent[is.na(stoxData[[TargetVariable]])]
        
        # This temporarily doubles the memory, as stoxData is modified:
        stoxData <- stoxData[grid[, ..paddingVariables], on = paddingVariables]
        # Free the memory of the large object:
        #gc()
        
        # Convert the NAs to 0 for the abundance and biomass columns:
        possibleAbudanceVariables <- setdiff(names(stoxData), paddingVariables)
        # Convert NA to 0 only for Biomass or Abundance:
        abudanceVariableKeys <- getRstoxBaseDefinitions("dataVariables")
            
        isAbudanceVariable <- rowSums(outer(possibleAbudanceVariables, abudanceVariableKeys, startsWith)) > 0
        abudanceVariables <- possibleAbudanceVariables[isAbudanceVariable]
        
        if(length(abudanceVariables)) {
            # Set all NA to 0, both those from the original stoxData and those introduced by the grid:
            replaceNAByReference(stoxData, cols = abudanceVariables, replacement = list(numeric = 0, integer = 0L))
            # Restore the NAs from the original stoxData:
            stoxData[areNA, eval(TargetVariable) := NA]
        }
    }
    
    
    
    # Keep the original unique GroupingVariables, InformationVariables, to add after the CJ-ing, so that this process is not corrupted by any NAs introduced when CJ-ing:
    #stoxData0 <- data.table::copy(stoxData) #  This made a copy and took up too much memory
    toAdd <- unique(stoxData[, c(GroupingVariables, InformationVariables), with = FALSE])
    
    # Function to build an expression stringg for use in data.table:
    fun2funString <- function(
        fun, 
        var, 
        Specification, 
        na.rm
    ) {
        
        # Whether we are using a function with a specification parameter:
        specified <- hasSpecificationParameter(fun)
        #specificationParameter <- getReportFunctionElementByFunctionName(fun, "specificationParameter")
        specificationParameterDisplayName <- getReportFunctionElementByFunctionName(fun, "specificationParameterDisplayName")
        if(specified && !length(Specification)) {
            stop("The parameter '", specificationParameterDisplayName, "' must be given.")
        }
        
        # Check whether the specification parameter is given:
        if(specified && any(lengths(Specification[specificationParameterDisplayName]) == 0)) {
            stop("The function ", fun, " needs the arguments ",  specificationParameterDisplayName, "!")
        }
        
        par <- unname(unlist(Specification[specificationParameterDisplayName]))
        
        # Paste the function alias (used for the number function exposed to the user), the first argument (x if specified that the function has one, which currently only the number does not), the specification argument if present, and the mandatory na.rm:
        paste0(
            "as.list(", 
            getReportFunctionAlias(fun), 
            "(", 
            if(hasX(fun)) 
                paste0(var, ", "), 
            if(specified && length(par)) 
                paste(
                    if(!hasX(fun)) var,
                    if(!hasX(fun)) {
                        paste(par, collapse = " ") # This means that if there are more than one specification parameter, these will be pasted. This is only the case for number and fractionOfOccurrence which use a conndition string  
                    }
                    else {
                        if(length(par) == 1) {
                            par
                        }
                        else {
                            deparse(par) 
                        }
                    },
                    ", " # Used to separate the following na.rm
                    #if(length(par) > 1) 
                    #    deparse(par) 
                    #else 
                    #    par, 
                ), 
            "na.rm = ", na.rm, ")", 
            ")"
        )
    }
    
    
    callString <- fun2funString(
        fun = ReportFunction, 
        var = TargetVariable, 
        Specification,
        na.rm = na.rm
    )
    
    #message("Evaluating callString: ", callString)
    
    # Run the function:
    #outputData <- stoxData[, fun(.SD), by = GroupingVariables]
    outputData <- stoxData[, eval(parse(text = callString)), by = GroupingVariables]
    # Free the memory of the large object:
    #rm(stoxData)
    #gc()
    
    # If the ReportFunction did not produce any names for the output (last column named V1, (or possibly V2, V3, ..., V9 in case some column is temporaarily named V1 in future code)), use the ReportFunction in the names:
    if(ncol(outputData) == length(GroupingVariables) + 1  &&  grepl("^V\\d$", names(outputData)[ncol(outputData)])) {
        data.table::setnames(outputData, ncol(outputData), paste(TargetVariable, ReportFunction, sep = "_"))
    }
    # Add the target variable as prefix in the column names of the output:
    else {
        atOutputColumns <- seq(length(GroupingVariables) + 1, ncol(outputData))
        data.table::setnames(outputData, atOutputColumns, paste(TargetVariable, names(outputData)[atOutputColumns], sep = "_"))
    }
    
    
    
    if(length(uniqueGroupingVariablesToKeep)) {
        # Discard all rows with combinations of the GroupingVariables that are not present in the BootstrapData[[BaselineProcess]]:
        outputData <- outputData[uniqueGroupingVariablesToKeep, , on = names(uniqueGroupingVariablesToKeep)]
    }
    
    # New as of 2022-11-23:
    # This is a possible solution, butt maybe the best is to solve the issue in the bootstrap data, so that all super-individuals are kept, but with data variable 0 for those that are excluded in a bootstrap run. There is a positive probability that e.g. an age is excluded in ALL bootstrap runs, in which case the padWithZerosOn cannot regrenerate the age. 
    # The CJ operation when padWithZerosOn is given expannds to a grid of all possible combinations of the GroupingVariables. However, not all of these combinations are relevant, or present in the original data. So we delete all rows with 0 or NA for all data columns, except if all are NA:
    #allNA <- apply(outputData[, sapply(.SD, is.na), .SDcols = -GroupingVariables], 1, all)
    #all0OrNA <- apply(outputData[, sapply(.SD, function(x) is.na(x) | x == 0), .SDcols = -GroupingVariables], 1, all)
    #outputData <- subset(outputData, allNA | !all0OrNA)
    
    # Order by the grouping variables:
    if(length(GroupingVariables)) {
        data.table::setorderv(outputData, GroupingVariables)
    }
    
    # Add the InformationVariables: 
    if(length(InformationVariables)) {
        if(any(InformationVariables %in% GroupingVariables)) {
            warning("StoX: Removing the following InformationVariables that are present also in GroupingVariables: ", paste(intersect(InformationVariables, GroupingVariables), collapse = ", "), ".")
            InformationVariables <- setdiff(InformationVariables, GroupingVariables)
        }
        if(length(InformationVariables)) {
            
            nUniqueLevelsOfGroupingVariables <- nrow(unique(outputData[, GroupingVariables, with = FALSE]))
            nUniqueLevelsOfInformationVariables <- nrow(toAdd)
            if(nUniqueLevelsOfInformationVariables > nUniqueLevelsOfGroupingVariables) {
                stop("The InformationVariables cannot contain more unique combinations than the GroupingVariables.")
            }
            outputData <- merge(
                outputData, 
                toAdd,  
                all.x = TRUE, 
                by = GroupingVariables
            )
            
            data.table::setcolorder(outputData, c(GroupingVariables, InformationVariables))
        }
    }
    
    return(outputData)
}


# Get/define the report function result variable name suffix:
getReportFunctionOutputNames <- function(functionName, packageName, args = list()) {
    # If a function returning av vector, this vector is named. We get the names:
    if(functionName %in% getReportFunctions(multiple = TRUE)) {
        result <- names(
            RstoxData::do.call_robust(
                functionName, 
                args = c(
                    list(0), 
                    args[! names(args) %in% c("x", "")]
                ), 
                envir = as.environment(paste("package", packageName, sep = ":")), 
                keep.unnamed = TRUE
            )
        )
    }
    else {
        result <- functionName
    }
    
    return(result)
}


##################################################
#' Get the name of the target variable after aggregating.
#' 
#' @inheritParams general_report_arguments
#' @param functionName The aggregation function name.
#' @param args A list of arguments to apply to the function given by \code{functionName}.
#'
#' @export
#' 
getReportFunctionVariableName <- function(functionName, TargetVariable, args = list()) {
    suffix <- getReportFunctionOutputNames(
        functionName = functionName, 
        packageName = getReportFunctionElementByFunctionName(functionName, "packageName"), 
        args = args
    )
    paste(TargetVariable, suffix, sep = "_")
}


hasWeightingParameter <- function(x) {
    reportFunctions <- getRstoxBaseDefinitions("reportFunctions")
    reportFunctions$weighted[reportFunctions$functionName == x]
}

hasSpecificationParameter <- function(x) {
    reportFunctions <- getRstoxBaseDefinitions("reportFunctions")
    reportFunctions$specified[reportFunctions$functionName == x]
}

getReportFunctionAlias <- function(x) {
    reportFunctions <- getRstoxBaseDefinitions("reportFunctions")
    alias <- reportFunctions$functionAlias[reportFunctions$functionName == x]
    if(is.na(alias)) {
        alias <- x
    }
    return(alias)
}

hasX <- function(x) {
    reportFunctions <- getRstoxBaseDefinitions("reportFunctions")
    reportFunctions$hasX[reportFunctions$functionName == x]
}



# Get an element of the report function definitions:
getReportFunctionElementByFunctionName <- function(x, element) {
    reportFunctions <- getRstoxBaseDefinitions("reportFunctions")
    reportFunctions[[element]][[which(reportFunctions$functionName == x)]]
}


##################################################
##################################################
#' Report SpeciesCategoryCatch
#' 
#' Reports the sum, mean or other functions on a variable of the \code{\link{SpeciesCategoryCatch}}.
#' 
#' @inheritParams ModelData
#' @param TargetVariable The column to report.
#' @param TargetVariableUnit The unit to use for the \code{TargetVariable}. See RstoxData::StoxUnits for possible units (look for the appropriate quantity, e.g. "length" for IndividualTotalLength, and use the shortname in the \code{TargetVariableUnit}).
#' 
#' @details This function is useful to, e.g, sum Biomass for each SpeciesCategory and IndividualTotalLenght, or average IndividualTotalLength for each IndiivdualAge and Stratum.
#' 
#' @return
#' A \code{\link{ReportSpeciesCategoryCatchData}} object.
#' 
#' @export
#' 
ReportSpeciesCategoryCatch <- function(
    SpeciesCategoryCatchData, 
    TargetVariable = c("TotalCatchWeight", "TotalCatchNumber"), 
    TargetVariableUnit = character()
){
    
    # Get the TargetVariable:
    TargetVariable <- RstoxData::match_arg_informative(TargetVariable)
    
    # Warning if there are species categories which are empty string:
    categoryVariable <- getDataTypeDefinition(dataType = "DensityData", elements = "categoryVariable", unlist = TRUE)
    emptyString <- SpeciesCategoryCatchData[, nchar(get(categoryVariable))] == 0
    if(any(emptyString, na.rm = TRUE)) {
        warning("StoX: There are empty strings for the ", categoryVariable, ". These will be included in the column V1 in the SpeciesCategoryCatch table.")
    }
    
    SpeciesCategoryCatchData[[TargetVariable]] <- setUnitRstoxBase(
        SpeciesCategoryCatchData[[TargetVariable]], 
        dataType =  "SpeciesCategoryCatchData", 
        variableName = TargetVariable, 
        unit = TargetVariableUnit
    )
    
    # Create the table with species categories in the columns:
    ReportSpeciesCategoryCatchData <- data.table::dcast(
        SpeciesCategoryCatchData, 
        formula = Haul ~ get(categoryVariable), 
        value.var = TargetVariable, 
        fun.aggregate = sum
    )
    
    # Add haul info as the unique table of all variables except the category and data variables:
    dataVariables <- getDataTypeDefinition(dataType = "SpeciesCategoryCatchData", elements = "data", unlist = TRUE)
    # Also remove the variables of the Sample and SpeciesCategory that are not present in the higher tables of StoxBiotic:
    stoxDataVariableNames <- attr(SpeciesCategoryCatchData, "stoxDataVariableNames")
    removeAlso <- setdiff(unlist(stoxDataVariableNames[c("SpeciesCategory", "Sample")]), unlist(stoxDataVariableNames[c("Cruise", "Station", "Haul")]))
    removeAlso <- intersect(removeAlso, names(SpeciesCategoryCatchData))
    
    haulInfo <- unique(SpeciesCategoryCatchData[, !c(categoryVariable, dataVariables, removeAlso), with = FALSE], by = "Haul")
    
    ReportSpeciesCategoryCatchData <- merge(
        haulInfo, 
        ReportSpeciesCategoryCatchData, 
        by = "Haul"
    )
    
    if(RstoxData::hasUnit(SpeciesCategoryCatchData[[TargetVariable]], property = "shortname")) {
        unit <- RstoxData::getUnit(SpeciesCategoryCatchData[[TargetVariable]], property = "shortname")
        ReportSpeciesCategoryCatchData <- cbind(ReportSpeciesCategoryCatchData, Unit = unit)
    }
    
    return(ReportSpeciesCategoryCatchData)
}




##################################################
##################################################
#' Write StratumPolygon
#' 
#' Writes a StratumPolygon to GeoJSON, StoX_WKT or shapefile.
#' 
#' @inheritParams ProcessData
#' @param FileFormat The format of the files to write the StratumPolygon to. \code{\link{StoX_multipolygon_WKT}} is the table of stratum name and WKT multipolygon used by StoX. 
#' 
#' @details The actual writing takes place in RstoxFramework. This function only converts the data to appropriate classes interpreted by RstoxFramework.
#' 
#' @return
#' A \code{\link{WriteStratumPolygonData}} object.
#' 
#' @export
#' 
WriteStratumPolygon <- function(
    StratumPolygon, 
    FileFormat = c("GeoJSON", "StoX_multipolygon_WKT", "StoX_shapefile")
) 
{
    
    FileFormat <- RstoxData::match_arg_informative(FileFormat)
    output <- StratumPolygon
    
    if(FileFormat == "GeoJSON") {
        # Do nonthing, as RstoxFramework wrirtes GeoJSON from SpatialPolygonsDataFrame.
    }
    else if(FileFormat == "StoX_multipolygon_WKT") {
        # Convert to WKT character vector:
        StoX_WKT <- sf::st_as_text(sf::st_as_sfc(StratumPolygon, forceMulti = TRUE))
        # Add stratum names in a matrix:
        output <- cbind(
            getStratumNames(StratumPolygon), 
            StoX_WKT
        )
        class(output) <- FileFormat
    }
    else if(FileFormat == "StoX_shapefile") {
        class(output) <- FileFormat
    }
    else {
        stop("Wrong FileFormat")
    }
    
    return(output)
}



##################################################
##################################################
#' Filter a table
#' 
#' @param table The data.table to filter.
#' @param filter A string with an R expression to filter out unwanted rows of the report, e.g. "IndividualAge \%notin\% NA" or "Survey \%notin\% NA & SpeciesCategory \%notin\% NA".
#' 
#' @export
#' 
filterTable <- function(table, filter = character()) {
    if(!sum(nchar(filter))) {
        return(table)
    }
    
    # Make sure the filter does not contain any system calls:
    RstoxData::sanitizeExpression(filter)
    
    `%notin%` <- Negate(`%in%`)
    `%notequal%` <- function(x, table) is.na(x) | x %notin% table
    
    # Accept quoted string:
    filter <- gsub('[\"]', '', filter)
    
    # In case the table is not data.table or not recognized as such by R:
    if(!data.table::is.data.table(table)) {
        data.table::setDT(table)
    }
    
    test <- try(table <- table[eval(parse(text = filter)), ], silent = TRUE)
    if(class(test)[1] == "try-error") {
        stop("StoX: Invalid Filter.")
    }
    
    return(table)
}














##################################################
##################################################
#' Report PreySpeciesCategoryCatchData
#' 
#' Reports the sum, mean or other functions on a variable of the \code{\link{PreySpeciesCategoryCatchData}}.
#' 
#' @inheritParams ModelData
#' @inheritParams general_report_arguments
#' 
#' @return
#' A \code{\link{ReportPreySpeciesCategoryCatchData}} object.
#' 
ReportPreySpeciesCategoryCatch <- function(
    PreySpeciesCategoryCatchData, 
    # No longer hard coding this to weight:
    #TotalPreyCatchWeightUnit = character(), 
    TargetVariable = c("TotalPreyCatchWeight", "TotalPreyCatchNumber"), 
    TargetVariableUnit = character(),
    ReportFunction = getReportFunctions(use = "Baseline"), 
    GroupingVariables = character(), 
    InformationVariables = character(), 
    Filter = character(), 
    RemoveMissingValues = FALSE, 
    WeightingVariable = character(), 
    ConditionOperator = character(), 
    ConditionValue = character(), 
    FractionOverVariable = character()
) 
{
    # Export this function when prey is official
    
    # Issue a warning if RemoveMissingValues = TRUE:
    if(isTRUE(RemoveMissingValues) && any(is.na(PreySpeciesCategoryCatchData[[TargetVariable]]))) {
        warning(getRstoxBaseDefinitions("RemoveMissingValuesWarning")(TargetVariable))
    }
    
    PreySpeciesCategoryCatchData[[TargetVariable]] <- setUnitRstoxBase(
        PreySpeciesCategoryCatchData[[TargetVariable]], 
        dataType =  "PreySpeciesCategoryCatchData", 
        variableName = TargetVariable, 
        unit = TargetVariableUnit
    )
    
    output <- aggregateBaselineDataOneTable(
        stoxData = PreySpeciesCategoryCatchData, 
        TargetVariable = TargetVariable, 
        ReportFunction = ReportFunction, 
        GroupingVariables = GroupingVariables, 
        InformationVariables = InformationVariables, 
        na.rm = RemoveMissingValues, 
        Specification = list(
            WeightingVariable = WeightingVariable,
            ConditionOperator = ConditionOperator, 
            ConditionValue = ConditionValue, 
            FractionOverVariable = FractionOverVariable
        )
    )
    
    if(RstoxData::hasUnit(PreySpeciesCategoryCatchData[[TargetVariable]], property = "shortname")) {
        unit <- RstoxData::getUnit(PreySpeciesCategoryCatchData[[TargetVariable]], property = "shortname")
        output <- cbind(output, Unit = unit)
    }
    
    output <- filterTable(output, filter = Filter)
    
    return(output)
}
StoXProject/RstoxBase documentation built on Nov. 6, 2024, noon