test_that("Basic emulator construction", {
test_em <- Emulator$new(
basis_f <- c(function(x) 1, function(x) x[[1]]),
beta = list(mu = c(1, 1),
sigma = diag(0, nrow = 2)),
u <- list(sigma = 2, corr = Correlator$new()),
ranges <- list(x = c(0, 2))
)
expect_equal(
test_em$active_vars,
c(TRUE)
)
expect_equal(
test_em$beta_sigma,
diag(0, nrow = 2)
)
expect_equal(
purrr::map_dbl(
test_em$basis_f, purrr::exec, data.frame(x = 2)
),
c(1, 2)
)
expect_equal(
test_em$u_sigma,
2
)
expect_equal(
test_em$corr$corr_name,
"exp_sq"
)
expect_equal(
test_em$corr$hyper_p$theta,
0.1
)
})
data <- data.frame(x = seq(-1, 1, by = 0.2), y = seq(0, 2, by = 0.2),
f = 0.8*sin((seq(-1, 1, by = 0.2)-0.2)*pi/0.35))
data_em <- Emulator$new(
basis_f = c(function(x) 1),
beta = list(mu = c(1), sigma = diag(0, nrow = 1)),
u = list(
corr = Correlator$new('matern', hp = list(theta = 0.2, nu = 1.5)),
sigma = 1
),
ranges = list(x = c(-1, 1), y = c(0, 2)),
)
data_em$output_name <- 'f'
test_that("Emulator with data", {
test_data <- data.frame(x = c(-0.2, 0, 0.2), y = c(0.8, 1, 1.2))
expect_equal(
data_em$get_exp(test_data),
c(1, 1, 1)
)
expect_equal(
data_em$get_cov(test_data),
c(1, 1, 1)
)
data_em_adj <- data_em$adjust(data, 'f')
expect_equal(
data_em_adj$get_exp(test_data),
data$f[5:7],
tolerance = 1e-5
)
expect_equal(
c(data_em_adj$get_cov(test_data), use.names = FALSE),
c(0, 0, 0),
tolerance = 1e-5
)
})
em <- emulator_from_data(SIRSample$training,
c('nI'),
list(aSI = c(0.1, 0.8),
aIR = c(0, 0.5),
aSR = c(0, 0.05)),
verbose = FALSE)$nI
test_that("Trained emulator covariance", {
expect_equal(
length(
em$get_cov(SIRSample$validation[1:5,],
SIRSample$validation[5:9,])
),
5
)
expect_equal(
dim(
em$get_cov(SIRSample$validation[1:5,],
SIRSample$validation[5:10,],
full = TRUE)
),
c(5, 6)
)
})
test_that("Modifying priors and functional sigma", {
em_2 <- em$set_sigma(2)
expect_equal(
em_2$u_sigma,
2
)
em_3 <- em_2$mult_sigma(2)
expect_equal(
em_3$u_sigma,
4
)
em_4 <- em_2$set_hyperparams(
hp = list(theta = 0.75),
nugget = 0.1
)
expect_equal(
em_4$corr$hyper_p$theta,
0.75
)
expect_equal(
em_4$corr$nugget,
0.1
)
em_sigma <- em$set_sigma(function(x) x[[1]]*5)
expect_false(
all(em_sigma$get_cov(SIRSample$training[1:3,]) == 0)
)
expect_equal(
dim(em_sigma$get_cov(SIRSample$training[1:3,],
SIRSample$training[2:5,],
full = TRUE)),
c(3, 4)
)
expect_equal(
c(em_sigma$get_exp(SIRSample$validation[1:3,],
include_c = FALSE), use.names = FALSE),
c(85.11743, 59.98822, 338.93812),
tolerance = 1e-4
)
em_sigma_2 <- em_sigma$mult_sigma(2)
expect_equal(
em_sigma_2$u_sigma(c(1, 0, 0)),
10
)
})
test_that("Modifying priors and functional sigma - untrained", {
em_o <- em$o_em
em_o2 <- em_o$set_sigma(2)
expect_equal(
em_o2$u_sigma,
2
)
em_o3 <- em_o2$mult_sigma(2)
expect_equal(
em_o3$get_cov(SIRSample$validation[1,,drop=FALSE]),
4
)
expect_equal(
em_o3$u_sigma,
2
)
em_o4 <- em_o2$set_hyperparams(
hp = list(theta = 0.7),
nugget = 0.3
)
expect_equal(
em_o4$corr$hyper_p$theta,
0.7
)
expect_equal(
em_o4$corr$nugget,
0.3
)
})
test_that("Derivative functions", {
expect_equal(
nrow(
em$get_exp_d(SIRSample$training[1:5,], 'aSI')
),
5
)
expect_equal(
c(em$get_exp_d(SIRSample$training[1:5,], 'aSR'), use.names = FALSE),
rep(0, 5)
)
expect_equal(
length(em$get_cov_d(SIRSample$training[1:5,], 'aSI')),
5
)
expect_equal(
dim(
em$get_cov_d(SIRSample$training[1:5,], 'aSI',
SIRSample$training[2:7,], 'aIR',
full = TRUE)
),
c(5, 6)
)
oem <- em$o_em
expect_equal(
nrow(
oem$get_exp_d(SIRSample$training[1:5,], 'aSI')
),
5
)
expect_equal(
c(oem$get_exp_d(SIRSample$training[1:5,], 'aSR'), use.names = FALSE),
rep(0, 5)
)
expect_equal(
length(unique(oem$get_cov_d(SIRSample$training[1:5,], 'aSI'))),
1
)
expect_equal(
dim(
oem$get_cov_d(SIRSample$training[1:5,], 'aSI',
SIRSample$training[2:7,], 'aIR',
full = TRUE)
),
c(5, 6)
)
})
test_that("Batch processing is called for >1000 points", {
many_points <- data.frame(
aSI = runif(2400, 0.1, 0.8),
aIR = runif(2400, 0, 0.5),
aSR = runif(2400, 0, 0.05)
)
expect_equal(
length(c(
em$get_exp(many_points))),
2400
)
expect_equal(
length(c(
em$get_cov(many_points))),
2400
)
expect_equal(
length(em$implausibility(many_points, SIREmulators$targets$nS)),
2400
)
})
test_that("Emulator with no variable dependence", {
fake_grid <- expand.grid(x = seq(1, 10, by = 1), y = seq(1, 10, by = 1))
fake_output <- rep(runif(1, -5, 5), 100) + runif(100, -1e-5, 1e-5)
fake_data <- cbind.data.frame(fake_grid, fake_output) |> setNames(letters[24:26])
fake_em <- suppressWarnings(emulator_from_data(fake_data, c('z'), list(x = c(1, 10), y = c(1, 10)),
beta_var = TRUE, verbose = FALSE)$z)
expect_equal(
suppressWarnings(c(fake_em$get_exp(fake_data), use.names = FALSE)),
c(fake_data$z),
tolerance = 1e-6
)
expect_true(
suppressWarnings(all(fake_em$get_cov(fake_data) <= 1e-5))
)
expect_equal(
length(c(fake_em$o_em$get_exp(fake_data))),
100
)
expect_equal(
length(c(fake_em$o_em$get_cov(fake_data))),
100
)
expect_equal(
length(c(fake_em$get_exp_d(fake_data, 'x'))),
100
)
expect_equal(
length(c(fake_em$get_cov_d(fake_data, 'x'))),
100
)
})
test_that("Printing works", {
expect_output(
print(em),
"Parameters and ranges"
)
expect_output(
print(em),
"Regression surface Variance"
)
expect_output(
print(em),
"Bayes-adjusted emulator - prior specifications listed"
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.