Description Usage Arguments Value Examples
Sample cluster and outlier detection
1 2 3 4 5 6 7 8 | WGCNA_sampleClusterDetectOutlier(
wgcnaL,
thresholdZ.k = -2.5,
saveplot = NULL,
removeOutlier = F,
traitColors = NULL,
...
)
|
wgcnaL |
A matrix or an object return by |
thresholdZ.k |
Threshold for defining outliers. First compute the overall corelation of one sample to other samples. Then do Z-score transfer for all correlation values. The samples with corelation values less than given value would be treated as outliers. Default -2.5 meaning -2.5 std. |
saveplot |
Save plot to given file "a.pdf", "b.png". |
removeOutlier |
Remove outlier samples. Normally this should be only performed if no suitable soft power can be found. |
traitColors |
Sample attributes data frame transferred by
|
... |
Additional parameters given to plot output ( |
A data frame.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | df = generateAbundanceDF(nSample=30, nGrp=3)
datExpr <- WGCNA_dataFilter(df)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr)
exprMat <- "test.file"
wgcnaL <- WGCNA_readindata(exprMat)
traitData <- 'trait.file'
wgcnaL <- WGCNA_readindata(exprMat, traitData)
datExpr <- wgcnaL$datExpr
WGCNA_dataCheck(datExpr)
datExpr <- WGCNA_dataFilter(datExpr)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr, traitColors=wgcnaL$traitColors)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.