getFMM_PBLSGM <- function(dat, T_records, nClass, traj_var, t_var, res_ratio = list(rep(4, 2), rep(4, 2)), rho = list(rep(0.1, 2), rep(0.1, 2)),
btw_rho = list(rep(0.1, 1), rep(0.1, 1)), btw_res = list(rep(0.3, 1), rep(0.3, 1)), starts = NA, prop_starts = rep(0.5, 2),
loc = 1, scale = 0.25, extraTries = NA, original = T, paraNames = NA){
if (I(original & any(is.na(paraNames)))){
print("Please enter the original parameters if want to obtain them!")
break
}
if (sum(prop_starts) != 1){
stop("The sum of all proportion components should be 1!")
}
else{
nT <- rep(0, length(traj_var))
if (any(is.na(starts))){
starts <- list()
label <- matrix(0, nrow = nrow(dat), ncol = length(traj_var))
for (traj in 1:length(traj_var)){
nT[traj] <- length(T_records[[traj]])
FMM <- getFMM_BLSGM(dat = dat, T_records = T_records[[traj]], nClass = nClass, traj_var = traj_var[traj], t_var = t_var[traj],
res_ratio = res_ratio[[traj]], rho = rho[[traj]], prop_starts = prop_starts, original = F)
model.para <- summary(FMM)$parameters[, c(1, 5, 6)]
FMM_post <- getPosterior(model = FMM, classProbs = FMM$weights$values, round = 4)
label[, traj] <- apply(FMM_post, 1, which.max)
}
dat$label <- 0
for (i in 1:nrow(dat)){
dat$label[i] <- ifelse(length(unique(label[i, ])) == 1, label[i, 1], 0)
}
for (k in 1:nClass){
uni_residual <- list()
uni_mean0.s <- uni_var0 <- uni_grad0 <- list()
subdat <- dat[dat$label == k, ]
res_ratio_k <- rho_k <- rep(0, length(traj_var))
for (traj in 1:length(traj_var)){
res_ratio_k[traj] <- res_ratio[[traj]][k]
rho_k[traj] <- rho_k[[traj]][k]
}
submodel <- getPBLSGM_Fixed(dat = subdat, T_records = T_records, traj_var = traj_var, t_var = t_var, res_ratio = res_ratio_k, rho = rho_k,
btw_rho = btw_rho[[k]], btw_res = btw_res[[k]], original = F)
mug <- summary(submodel)$parameters$Estimate[c(grep("muknot", summary(submodel)$parameters$name))]
for (traj in 1:length(traj_var)){
uni_mean0.s[[length(uni_mean0.s) + 1]] <- c(mxEvalByName(paste0("mean_s", traj_var[traj]), model = submodel), mug[traj])
uni_var0[[length(uni_var0) + 1]] <- mxEvalByName(paste0("psi", traj_var[traj]), model = submodel)
uni_residual[[length(uni_residual) + 1]] <- submodel$S$values[(traj - 1) * nT[traj] + 1, (traj - 1) * nT[traj] + 1]
uni_grad0[[length(uni_grad0) + 1]] <- matrix(c(1, mug[traj], 0, 0, 0.5, 0.5, 0, -0.5, 0.5), nrow = 3, byrow = T)
}
multi_var0 <- as.matrix(Matrix::bdiag(uni_var0))
multi_grad0 <- as.matrix(Matrix::bdiag(uni_grad0))
multi_residuals <- as.matrix(Matrix::bdiag(uni_residual))
for (traj_i in 1:(length(traj_var) - 1)){
for (traj_j in traj_i:(length(traj_var) - 1)){
multi_var0[((traj_i - 1) * 3 + 1):((traj_i - 1) * 3 + 3), (traj_j * 3 + 1):(traj_j * 3 + 3)] <-
mxEvalByName(paste0("psi", traj_var[traj_i], traj_var[traj_j + 1]), model = submodel)
multi_residuals[traj_i, (traj_j + 1)] <- submodel$S$values[((traj_i - 1) * nT[traj_i] + 1), (traj_j * nT[traj_j] + 1)]
}
}
multi_var0.s <- multi_grad0 %*% multi_var0 %*% t(multi_grad0)
starts[[length(starts) + 1]] <- list(uni_mean0.s, multi_var0.s, multi_residuals)
}
}
w_starts <- log(prop_starts/prop_starts[1] * exp(1))
}
### Define manifest variables
traj_list <- list()
for (traj in 1:length(traj_var)){
traj_list[[length(traj_list) + 1]] <- paste0(traj_var[traj], 1:nT[traj])
}
manifests <- unlist(traj_list)
### Define latent variables
latents <- paste0(rep(c("eta0s", "eta1s", "eta2s"), length(traj_var)), rep(traj_var, each = 3))
class.list <- list()
for(k in 1:nClass){
outDef <- outLoads1 <- outLoads2 <- outDef_L <- outLoads1_L <- outLoads2_L <- list()
loadings1 <- loadings2 <- loadings3 <- gf_mean <- gamma_mean <- residual_var <- residual_cor <- list()
func_L <- grad_L <- mean_s_L <- psi_s_L <- psi_btw_s_L <- mean_L <- psi_L <- psi_btw_L <- list()
gf_var_label <- gf_cov_label <- list()
for (traj in 1:length(traj_var)){
for (j in T_records[[traj]]){
outDef[[j]] <- mxMatrix("Full", 1, 1, free = F, labels = paste0("data.", t_var[traj], j),
name = paste0(traj_var[traj], "t", j))
outLoads1[[j]] <- mxAlgebraFromString(paste0(traj_var[traj], "t", j, " - c", k, "mug", traj_var[traj]),
name = paste0("c", k, "L1", j, traj_var[traj]))
outLoads2[[j]] <- mxAlgebraFromString(paste0("abs(", traj_var[traj], "t", j, " - c", k, "mug", traj_var[traj], ")"),
name = paste0("c", k, "L2", j, traj_var[traj]))
}
outDef_L[[length(outDef_L) + 1]] <- outDef
outLoads1_L[[length(outLoads1_L) + 1]] <- outLoads1
outLoads2_L[[length(outLoads2_L) + 1]] <- outLoads2
outDef <- outLoads1 <- outLoads2 <- list()
#### Define factor loadings from latent variables to manifests
loadings1[[length(loadings1) + 1]] <- mxPath(from = paste0("eta0s", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 1)
loadings2[[length(loadings2) + 1]] <- mxPath(from = paste0("eta1s", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 0,
labels = paste0("c", k, "L1", T_records[[traj]], traj_var[traj], "[1,1]"))
loadings3[[length(loadings3) + 1]] <- mxPath(from = paste0("eta2s", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 0,
labels = paste0("c", k, "L2", T_records[[traj]], traj_var[traj], "[1,1]"))
#### Define means of outcome-specific growth factors
gf_mean[[length(gf_mean) + 1]] <- mxPath(from = "one", to = paste0(c("eta0s", "eta1s", "eta2s"), traj_var[traj]),
arrows = 1, free = T, values = starts[[k]][[1]][[traj]][1:3],
labels = paste0("c", k, c("mueta0s", "mueta1s", "mueta2s"), traj_var[traj]))
#### Add additional parameter and constraints
gamma_mean[[length(gamma_mean) + 1]] <- mxMatrix("Full", 1, 1, free = T, values = starts[[k]][[1]][[traj]][4],
labels = paste0("c", k, "muknot_", traj_var[traj]),
name = paste0("c", k, "mug", traj_var[traj]))
#### Define the variances of residuals
residual_var[[length(residual_var) + 1]] <- mxPath(from = traj_list[[traj]], to = traj_list[[traj]], arrows = 2, free = T,
values = starts[[k]][[3]][traj, traj],
labels = paste0("c", k, "residuals", traj_var[traj]))
#### Define transformed function
func_L[[length(func_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "mug", traj_var[traj], ", c", k, "mug", traj_var[traj], "), ",
"cbind(0, 1, -1), ", "cbind(0, 1, 1))"),
name = paste0("c", k, "func", traj_var[traj]))
grad_L[[length(grad_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(1, -c", k, "mug", traj_var[traj], ", c", k, "mug", traj_var[traj], "), ",
"cbind(0, 1, -1), ", "cbind(0, 1, 1))"),
name = paste0("c", k, "grad", traj_var[traj]))
#### Define the outcome-specific growth factor mean vector in the reparameterized framework
mean_s_L[[length(mean_s_L) + 1]] <- mxAlgebraFromString(paste0("rbind(c", k, "mueta0s", traj_var[traj],
", c", k, "mueta1s", traj_var[traj],
", c", k, "mueta2s", traj_var[traj], ")"),
name = paste0("c", k, "mean_s", traj_var[traj]))
#### Define the outcome-specific growth factor var-cov matrix in the reparameterized framework
psi_s_L[[length(psi_s_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(c", k, "psi0s0s", traj_var[traj], traj_var[traj],
", c", k, "psi0s1s", traj_var[traj], traj_var[traj],
", c", k, "psi0s2s", traj_var[traj], traj_var[traj], "), ",
"cbind(c", k, "psi0s1s", traj_var[traj], traj_var[traj],
", c", k, "psi1s1s", traj_var[traj], traj_var[traj],
", c", k, "psi1s2s", traj_var[traj], traj_var[traj], "), ",
"cbind(c", k, "psi0s2s", traj_var[traj], traj_var[traj],
", c", k, "psi1s2s", traj_var[traj], traj_var[traj],
", c", k, "psi2s2s", traj_var[traj], traj_var[traj], "))"),
name = paste0("c", k, "psi_s", traj_var[traj]))
#### Define the outcome-specific growth factor mean vector in the original framework
mean_L[[length(mean_L) + 1]] <- mxAlgebraFromString(paste0("c", k, "func", traj_var[traj], " %*% c", k, "mean_s", traj_var[traj]),
name = paste0("c", k, "mean", traj_var[traj]))
#### Define the outcome-specific growth factor var-cov matrix in the original framework
psi_L[[length(psi_L) + 1]] <- mxAlgebraFromString(paste0("c", k, "grad", traj_var[traj], " %*% c", k, "psi_s", traj_var[traj],
" %*% t(c", k, "grad", traj_var[traj], ")"),
name = paste0("c", k, "psi", traj_var[traj]))
#### Define var-cov of outcome-specific growth factors
gf_var_label[[length(gf_var_label) + 1]] <- matrix(paste0("c", k, "psi", c("0s0s", "0s1s", "0s2s", "1s0s", "1s1s", "1s2s", "2s0s", "2s1s", "2s2s"),
traj_var[traj], traj_var[traj]), byrow = T, nrow = 3, ncol = 3)
}
for (traj_i in 1:(length(traj_var) - 1)){
for (traj_j in traj_i:(length(traj_var) - 1)){
#### Define the between-outcome growth factor var-cov matrix in the reparameterized framework
psi_btw_s_L[[length(psi_btw_s_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(c", k, "psi0s0s", traj_var[traj_i], traj_var[traj_j + 1],
", c", k, "psi0s1s", traj_var[traj_i], traj_var[traj_j + 1],
", c", k, "psi0s2s", traj_var[traj_i], traj_var[traj_j + 1], "),",
"cbind(c", k, "psi1s0s", traj_var[traj_i], traj_var[traj_j + 1],
", c", k, "psi1s1s", traj_var[traj_i], traj_var[traj_j + 1],
", c", k, "psi1s2s", traj_var[traj_i], traj_var[traj_j + 1], "), ",
"cbind(c", k, "psi2s0s", traj_var[traj_i], traj_var[traj_j + 1],
", c", k, "psi2s1s", traj_var[traj_i], traj_var[traj_j + 1],
", c", k, "psi2s2s", traj_var[traj_i], traj_var[traj_j + 1],"))"),
name = paste0("c", k, "psi_s", traj_var[traj_i], traj_var[traj_j + 1]))
#### Define the between-outcome growth factor var-cov matrix in the reparameterized framework
psi_btw_L[[length(psi_btw_L) + 1]] <- mxAlgebraFromString(paste0("c", k, "grad", traj_var[traj_i], " %*% c", k, "psi_s",
traj_var[traj_i], traj_var[traj_j + 1],
" %*% t(c", k, "grad", traj_var[traj_i + 1], ")"),
name = paste0("c", k, "psi", traj_var[traj_i], traj_var[traj_j + 1]))
#### Define the covariances of residuals
if (setequal(substr(traj_list[[traj_i]], 2, 2), substr(traj_list[[traj_j + 1]], 2, 2))){
residual_cor[[length(residual_cor) + 1]] <- mxPath(from = traj_list[[traj_i]], to = traj_list[[traj_j + 1]],
arrows = 2, free = T, values = starts[[k]][[3]][traj_i, traj_j + 1],
labels = paste0("c", k, "residuals", traj_var[traj_i], traj_var[traj_j + 1]))
}
else{
T_common <- Reduce(intersect, list(substr(traj_list[[traj_i]], 2, 2), substr(traj_list[[traj_j + 1]], 2, 2)))
residual_cor[[length(residual_cor) + 1]] <- mxPath(from = paste0(traj_var[traj_i], T_common),
to = paste0(traj_var[traj_j + 1], T_common),
arrows = 2, free = T, values = starts[[k]][[3]][traj_i, traj_j + 1],
labels = paste0("c", k, "residuals", traj_var[traj_i], traj_var[traj_j + 1]))
}
gf_cov_label[[traj_i + traj_j - 1]] <- matrix(paste0("c", k, "psi", c("0s0s", "0s1s", "0s2s", "1s0s", "1s1s", "1s2s", "2s0s", "2s1s", "2s2s"),
traj_var[traj_i], traj_var[traj_j + 1]), byrow = T, nrow = 3, ncol = 3)
}
}
multi_label <- matrix(NA, nrow = length(latents), ncol = length(latents))
for (traj in 1:length(traj_var)){
multi_label[((traj - 1) * 3 + 1):((traj - 1) * 3 + 3), ((traj - 1) * 3 + 1):((traj - 1) * 3 + 3)] <- gf_var_label[[traj]]
}
for (traj_i in 1:(length(traj_var) - 1)){
for (traj_j in traj_i:(length(traj_var) - 1)){
multi_label[((traj_i - 1) * 3 + 1):((traj_i - 1) * 3 + 3), (traj_j * 3 + 1):(traj_j * 3 + 3)] <- gf_cov_label[[traj_i + traj_j - 1]]
}
}
### Create a mxModel object
class.list[[length(class.list) + 1]] <- mxModel(paste0("Class", k), type = "RAM",
manifestVars = manifests, latentVars = latents,
mxData(observed = dat, type = "raw"),
#### Define var-cov matrix of latent variables
mxPath(from = latents, to = latents, arrows = 2, connect = "unique.pairs",
free = T, values = t(starts[[k]][[2]])[row(t(starts[[k]][[2]])) >= col(t(starts[[k]][[2]]))],
labels = t(multi_label)[row(t(multi_label)) >= col(t(multi_label))]),
outDef_L, outLoads1_L, outLoads2_L, loadings1, loadings2, loadings3,
gf_mean, gamma_mean, residual_var, residual_cor, func_L, grad_L,
mean_s_L, psi_s_L, psi_btw_s_L, mean_L, psi_L, psi_btw_L,
mxFitFunctionML(vector = T))
}
### Make the class proportion matrix, fixing one parameter at a non-zero constant (one)
classP <- mxMatrix("Full", nClass, 1, free = c(F, rep(T, nClass - 1)), values = w_starts,
labels = paste0("w", 1:nClass), name = "weights")
algebraObjective <- mxExpectationMixture(paste0("Class", 1:nClass), weights = "weights", scale = "softmax")
objective <- mxFitFunctionML()
model_mx <- mxModel("Finite Mixture Model, Parallel Bilinear Spline Growth Model with Fixed Knots",
mxData(observed = dat, type = "raw"), class.list, classP, algebraObjective, objective)
if (!is.na(extraTries)){
model <- mxTryHard(model_mx, extraTries = extraTries, OKstatuscodes = 0, loc = loc, scale = scale)
}
else{
model <- mxRun(model_mx)
}
if (original){
model.para <- summary(model)$parameters[, c(1, 5, 6)]
model.est <- model.se <- est <- list()
for (k in 1:nClass){
mean_est <- mean_se <- psi_est <- psi_se <- psi_btw_est <- psi_btw_se <- outcome_est <- outcome_se <- btw_est <- btw_se <- list()
mug <- model.para$Estimate[c(grep(paste0("c", k, "muknot"), model.para$name))]
mug_se <- model.para$Std.Error[c(grep(paste0("c", k, "muknot"), model.para$name))]
for (traj in 1:length(traj_var)){
mean_est[[length(mean_est) + 1]] <- c(mxEvalByName(paste0("c", k, "mean", traj_var[traj]), model = model@submodels[[k]]), mug[traj])
mean_se[[length(mean_se) + 1]] <- c(mxSE(paste0("Class", k, ".c", k, "mean", traj_var[traj]), model, forceName = T), mug_se[traj])
psi_est[[length(psi_est) + 1]] <- mxEvalByName(paste0("c", k, "psi", traj_var[traj]), model = model@submodels[[k]])
psi_se[[length(psi_se) + 1]] <- mxSE(paste0("Class", k, ".c", k, "psi", traj_var[traj]), model, forceName = T)
outcome_est[[length(outcome_est) + 1]] <- c(unlist(mean_est[[traj]]), psi_est[[traj]][row(psi_est[[traj]]) >= col(psi_est[[traj]])])
outcome_se[[length(outcome_se) + 1]] <- c(unlist(mean_se[[traj]]), psi_se[[traj]][row(psi_se[[traj]]) >= col(psi_se[[traj]])])
}
for (traj in 1:(length(traj_var) - 1)){
psi_btw_est[[length(psi_btw_est) + 1]] <- mxEvalByName(paste0("c", k, "psi", traj_var[traj], traj_var[traj + 1]), model = model@submodels[[k]])
psi_btw_se[[length(psi_btw_se) + 1]] <- mxSE(paste0("Class", k, ".c", k, "psi", traj_var[traj], traj_var[traj + 1]), model, forceName = T)
btw_est[[length(btw_est) + 1]] <- unlist(c(psi_btw_est))
btw_se[[length(btw_se) + 1]] <- unlist(c(psi_btw_se))
}
model.est[[length(model.est) + 1]] <- round(c(unlist(outcome_est), unlist(btw_est), model.para[grep(paste0("c", k, "residual"), model.para$name), 2]), 4)
model.se[[length(model.se) + 1]] <- round(c(unlist(outcome_se), unlist(btw_se), model.para[grep(paste0("c", k, "residual"), model.para$name), 3]), 4)
est[[length(est) + 1]] <- data.frame(Name = paste0("c", k, paraNames),
Estimate = model.est[[k]], SE = model.se[[k]])
}
est.weights <- data.frame(Name = paste0("p", 2:nClass),
Estimate = round(model.para[grep("w", model.para$name), 2], 4),
SE = round(model.para[grep("w", model.para$name), 3], 4))
estimate_out <- rbind(do.call(rbind.data.frame, est), est.weights)
return(list(model, estimate_out))
}
else{
return(model)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.