A memory-efficient, visualize-enhanced, parallel-accelerated Genome-Wide Association Study (GWAS) tool. It can (1) effectively process large data, (2) rapidly evaluate population structure, (3) efficiently estimate variance components several algorithms, (4) implement parallel-accelerated association tests of markers three methods, (5) globally efficient design on GWAS process computing, (6) enhance visualization of related information. 'rMVP' contains three models GLM (Alkes Price (2006) <DOI:10.1038/ng1847>), MLM (Jianming Yu (2006) <DOI:10.1038/ng1702>) and FarmCPU (Xiaolei Liu (2016) <doi:10.1371/journal.pgen.1005767>); variance components estimation methods EMMAX (Hyunmin Kang (2008) <DOI:10.1534/genetics.107.080101>;), FaSTLMM (method: Christoph Lippert (2011) <DOI:10.1038/nmeth.1681>, R implementation from 'GAPIT2': You Tang and Xiaolei Liu (2016) <DOI:10.1371/journal.pone.0107684> and 'SUPER': Qishan Wang and Feng Tian (2014) <DOI:10.1371/journal.pone.0107684>), and HE regression (Xiang Zhou (2017) <DOI:10.1214/17-AOAS1052>).
Package details |
|
---|---|
Author | Lilin Yin [aut], Haohao Zhang [aut], Zhenshuang Tang [aut], Jingya Xu [aut], Dong Yin [aut], Zhiwu Zhang [aut], Xiaohui Yuan [aut], Mengjin Zhu [aut], Shuhong Zhao [aut], Xinyun Li [aut], Qishan Wang [ctb], Feng Tian [ctb], Hyunmin Kang [ctb], Xiang Zhou [ctb], Xiaolei Liu [cre, aut, cph] |
Maintainer | Xiaolei Liu <xll198708@gmail.com> |
License | Apache License 2.0 |
Version | 1.3.5 |
URL | https://github.com/xiaolei-lab/rMVP |
Package repository | View on GitHub |
Installation |
Install the latest version of this package by entering the following in R:
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.