MVP.HE.Vg.Ve: To estimate variance component using HE regression

View source: R/MVP.HE.Vg.Ve.R

MVP.HE.Vg.VeR Documentation

To estimate variance component using HE regression

Description

Build date: Feb 2, 2017 Last update: Feb 2, 2019

Usage

MVP.HE.Vg.Ve(y, X, K)

Arguments

y

phenotype

X

genotype

K

kinship matrix

Value

vg, ve, and delta

Author(s)

Translated from C++(GEMMA, Xiang Zhou) to R by: Haohao Zhang

Examples


phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "06_mvp-impute", "mvp.imp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))

K <- MVP.K.VanRaden(genotype, cpu=1)
vc <- MVP.HE.Vg.Ve(y=phenotype[,2], X=matrix(1, nrow(phenotype)), K=K)
print(vc)



XiaoleiLiuBio/MVP documentation built on Jan. 3, 2025, 5:59 a.m.