View source: R/MVP.BRENT.Vg.Ve.R
MVP.BRENT.Vg.Ve | R Documentation |
MVP.BRENT.Vg.Ve variance component estimation using the BRENT method
MVP.BRENT.Vg.Ve(y, X, eigenK, verbose = FALSE)
y |
phenotype |
X |
covariate matrix, the first column is 1s |
eigenK |
eigen of Kinship matrix |
verbose |
whether to print detail. |
vg, ve, and delta
phePath <- system.file("extdata", "07_other", "mvp.phe", package = "rMVP")
phenotype <- read.table(phePath, header=TRUE)
print(dim(phenotype))
genoPath <- system.file("extdata", "06_mvp-impute", "mvp.imp.geno.desc", package = "rMVP")
genotype <- attach.big.matrix(genoPath)
print(dim(genotype))
eigenK <- eigen(MVP.K.VanRaden(genotype, cpu=1))
vc <- MVP.BRENT.Vg.Ve(y=phenotype[,2], X=matrix(1, nrow(phenotype)), eigenK=eigenK)
print(vc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.