# test alpha estimation procedure
n <- 200
ds <- c(400, 200, 100)
simulatedData <- dataSimu_group_sparse(n = n, ds = ds,
dataTypes = "GGG",
noises = rep(1, 3),
margProb = 0.1,
sparse_ratio = 0,
SNRgc = 1,
SNRlc = rep(1, 3),
SNRd = rep(1, 3))
dataSets <- simulatedData$X
alphas_est <- rep(NA, 3)
opts <- list()
opts$tol_obj <- 1e-04
opts$quiet <- 1
for (i in 1:3) {
# index ith data set
X <- dataSets[[i]]
# add element-wise missing pattern
full_indexes <- 1:(n * dim(X)[2])
missing_index <- sample(full_indexes, round(0.1 * length(full_indexes)))
X[missing_index] <- NA
# add row-wise and column-wise missing pattern
X[sample(1:n, round(0.1 * n)), ] <- NA
X[, sample(1:dim(X)[2], round(0.1 * dim(X)[2]))] <- NA
# alpha estimation procedure
alpha_test <- alpha_estimation(X, K = 3, Rs = 5:20, opts = opts)
alphas_est[i] <- alpha_test$alphas_mean
}
expect_equal(rep(1, 3), alphas_est, tolerance = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.