## test the CV procedure for pESCA model
set.seed(123)
# simulate proper data sets
n <- 100
ds <- c(200, 100, 50)
simulatedData <- dataSimu_group_sparse(n = n, ds = ds,
dataTypes = "GGG",
noises = rep(1, 3),
margProb = 0.1,
sparse_ratio = 0,
SNRgc = 1,
SNRlc = rep(1, 3),
SNRd = rep(1, 3))
# parameters of a pESCA with concave L2norm penalty model
alphas <- rep(1, 3)
gamma <- 1
opts <- list()
opts$gamma <- gamma # hyper-parameter for the used penalty
opts$rand_start <- 0
opts$tol_obj <- 1e-06 # stopping criteria
opts$maxit <- 500
opts$alphas <- alphas
opts$R <- 30 # components used
opts$thr_path <- 0 # generaint thresholding path or not
opts$quiet <- 1
# specify data sets, data types and used concave functions
dataSets <- simulatedData$X
dataTypes <- "GGG"
fun_concave <- "gdp"
# model selection pESCA conave L2
nTries <- 15
lambdas_CV <- log10_seq(from = 1, to = 500, length.out = nTries)
penalty = "L2"
result_CV <- pESCA_CV(dataSets, dataTypes,
lambdas_CV,
penalty = penalty,
fun_concave = fun_concave,
opts = opts)
# select the model with minimum CV error
index_min_cv <- which.min(result_CV$cvErrors_mat[, 1])
# fit the final model
lambdas_opt <- rep(lambdas_CV[index_min_cv], length(dataSets))
opts_opt <- result_CV$inits[[index_min_cv]]
opts_opt$tol_obj <- 1e-08 # using high precision model
pESCA_L2 <- pESCA(dataSets = dataSets,
dataTypes = dataTypes,
lambdas = lambdas_opt,
penalty = penalty,
fun_concave = fun_concave,
opts = opts_opt)
# evaluate the final model
mu <- pESCA_L2$mu
A <- pESCA_L2$A
B <- pESCA_L2$B
S <- pESCA_L2$S
pESCA_L2_eval <- eval_metrics_simu_group(mu, A, B, S, ds, simulatedData)
expect_true(all(pESCA_L2_eval$RVs_structs > 0.95))
expect_true(all(pESCA_L2_eval$RMSEs_params < 0.05))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.