## test the CV procedure for pESCA model when simulated parameters are avaliable
set.seed(123)
# simulate proper data sets
n <- 100
ds <- c(200, 100, 50)
simulatedData <- dataSimu_group_sparse(n = n, ds = ds,
dataTypes = "GGG",
noises = rep(1, 3),
margProb = 0.1,
sparse_ratio = 0,
SNRgc = 1,
SNRlc = rep(1, 3),
SNRd = rep(1, 3))
# parameters of a pESCA with concave L2norm penalty model
alphas <- rep(1, 3)
gamma <- 1
opts <- list()
opts$gamma <- gamma # hyper-parameter for the used penalty
opts$rand_start <- 0
opts$tol_obj <- 1e-06 # stopping criteria
opts$maxit <- 500
opts$alphas <- alphas
opts$R <- 30 # components used
opts$thr_path <- 0 # generaint thresholding path or not
opts$quiet <- 1
# specify data sets, data types and used concave functions
dataSets <- simulatedData$X
dataTypes <- "GGG"
fun_concave <- "gdp"
# model selection pESCA conave L2
nTries <- 15
lambdas_CV <- log10_seq(from = 1, to = 500, length.out = nTries)
penalty = "L2"
result_CV_full <- pESCA_CV_fullInfo(simulatedData,
lambdas_CV = lambdas_CV,
penalty = penalty,
fun_concave = fun_concave,
opts = opts)
# select the model with minimum CV error
index_min_cv <- which.min(result_CV_full$cvErrors_mat[, 1])
# evaluate the performance of the selected model during model selection
expect_true(all(result_CV_full$RVs_mat[index_min_cv, ] > 0.9))
expect_true(all(result_CV_full$RMSEs_mat[index_min_cv, ] < 0.1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.