R/lsem.estimate.R

Defines functions lsem.estimate

Documented in lsem.estimate

## File Name: lsem.estimate.R
## File Version: 1.113

# estimate LSEM model
lsem.estimate <- function( data, moderator, moderator.grid,
        lavmodel, type="LSEM", h=1.1, bw=NULL, residualize=TRUE,
        fit_measures=c("rmsea","cfi","tli","gfi","srmr"), standardized=FALSE,
        standardized_type="std.all", lavaan_fct="sem", sufficient_statistics=TRUE,
        pseudo_weights=0, sampling_weights=NULL,
        loc_linear_smooth=TRUE, est_joint=FALSE, par_invariant=NULL, par_linear=NULL,
        par_quadratic=NULL, partable_joint=NULL, pw_linear=1,
        pw_quadratic=1, pd=TRUE, est_DIF=FALSE, se=NULL, kernel="gaussian", eps=1E-8,
        verbose=TRUE, ... )
{
    lsem_args <- c(as.list(environment()), list(...))
    CALL <- match.call()
    s1 <- Sys.time()
    lavaan.args <- list(...)
    if (standardized){
        if ( type=='MGM'){
            stop('standardized=TRUE cannot be applied for type=\'MGM\'')
        }
    }
    use_lavaan_survey <- FALSE

    #- check if list of imputed datasets is available
    is_imputed <- ! ( is.list(data) & is.data.frame(data) )

    #- data cleaning
    if (!is_imputed){
        data <- as.data.frame(data)
        data <- data[ ! is.na(data[,moderator]), ]
        moderator_variable <- data[,moderator]
        Nimp <- 0
    } else {
        moderator_variable <- NULL
        Nimp <- length(data)
    }

    #- process arguments
    res <- lsem_estimate_proc_args( lavaan.args=lavaan.args,
                sufficient_statistics=sufficient_statistics,
                pseudo_weights=pseudo_weights, lavmodel=lavmodel, data=data,
                use_lavaan_survey=use_lavaan_survey, est_joint=est_joint,
                par_invariant=par_invariant, par_linear=par_linear,
                par_quadratic=par_quadratic, partable_joint=partable_joint,
                moderator.grid=moderator.grid, se=se, verbose=verbose,
                is_imputed=is_imputed)
    sufficient_statistics <- res$sufficient_statistics
    use_lavaan_survey <- res$use_lavaan_survey
    variables_model <- res$variables_model
    use_pseudo_weights <- res$use_pseudo_weights
    variables_ordered <- res$variables_ordered
    est_joint <- res$est_joint
    partable <- res$partable
    has_meanstructure <- res$has_meanstructure
    se <- res$se
    compute_se <- res$compute_se
    pseudo_weights <- res$pseudo_weights
    some_ordinal <- res$some_ordinal

    # group moderator if type='MGM'
    out <- lsem_group_moderator( data=data, type=type, moderator.grid=moderator.grid,
                moderator=moderator, residualize=residualize, h=h,
                is_imputed=is_imputed, Nimp=Nimp )
    data <- out$data
    moderator.grouped <- out$moderator.grouped
    h <- out$h
    residualize <- out$residualize
    moderator.grid <- out$moderator.grid

    # residualize input data
    out <- lsem_residualize( data=data, moderator=moderator,
                    moderator.grid=moderator.grid, lavmodel=lavmodel, h=h, bw=bw,
                    residualize=residualize, eps=eps, verbose=verbose,
                    sampling_weights=sampling_weights, kernel=kernel,
                    variables_model=variables_model, is_imputed=is_imputed,
                    Nimp=Nimp)
    G <- out$G
    data <- out$data
    weights <- out$weights
    residualized_intercepts <- out$residualized_intercepts
    N <- out$N
    bw <- out$bw
    h <- out$h
    moderator.density <- out$moderator.density
    sampling_weights <- out$sampling_weights
    no_sampling_weights <- out$no_sampling_weights
    m.moderator <- out$m.moderator
    sd.moderator <- out$sd.moderator
    data$index <- seq(1,N)

    # unweighted fit of lavaan model
    dat <- data
    lavmodel__ <- lavmodel

    #* extract estimation function
    lavaan_est_fun <- lsem_define_lavaan_est_fun(lavaan_fct=lavaan_fct)

    #* fit initial lavaan model
    lavfit <- lsem_fit_initial_model( lavmodel__=lavmodel__,
                    lavaan_est_fun=lavaan_est_fun, dat=dat,
                    variables_model=variables_model, sampling_weights=sampling_weights,
                    has_meanstructure=has_meanstructure,
                    sufficient_statistics=sufficient_statistics, est_joint=est_joint,
                    se=se, use_lavaan_survey=use_lavaan_survey,
                    is_imputed=is_imputed, Nimp=Nimp, ... )
    nobs <- unlist(lavfit@Data@nobs)

    # extract variables which are in model and data frame
    pars <- sirt_import_lavaan_parameterEstimates(object=lavfit)
    fM <- sirt_import_lavaan_fitMeasures(object=lavfit)
    fit_measures <- intersect( fit_measures, names(fM) )
    fitstat <- fM[ fit_measures ]
    NF <- length(fit_measures)

    if (standardized){
        sol <- sirt_import_lavaan_standardizedSolution( object=lavfit,
                            type=standardized_type)
        colnames(sol)[ which( colnames(sol)=='est.std' ) ] <- 'est'
        sol$lhs <- paste0( 'std__', sol$lhs)
        pars <- sirt_rbind_fill( x=pars, y=sol )
    }
    pars <- apply( pars[, c('lhs', 'op', 'rhs' ) ], 1, FUN=function(ll){
                        paste0( ll[1], ll[2], ll[3] ) } )

    # fit LSEM for all moderator groups
    out2 <- lsem_fitsem( dat=dat, weights=weights, lavfit=lavfit,
                    fit_measures=fit_measures, NF=NF, G=G, moderator.grid=moderator.grid,
                    verbose=verbose, pars=pars, standardized=standardized,
                    variables_model=variables_model,
                    sufficient_statistics=sufficient_statistics,
                    lavaan_fct=lavaan_fct, lavmodel=lavmodel,
                    use_lavaan_survey=use_lavaan_survey,
                    pseudo_weights=pseudo_weights, est_joint=est_joint,
                    par_invariant=par_invariant, par_linear=par_linear,
                    par_quadratic=par_quadratic, partable_joint=partable_joint,
                    pw_linear=pw_linear, pw_quadratic=pw_quadratic,
                    se=se, moderator_variable=moderator_variable,
                    loc_linear_smooth=loc_linear_smooth, pd=pd,
                    residualized_intercepts=residualized_intercepts,
                    has_meanstructure=has_meanstructure, est_DIF=est_DIF,
                    residualize=residualize, is_imputed=is_imputed,
                    Nimp=Nimp, moderator=moderator, ... )
    dif_effects <- out2$dif_effects
    parameters <- out2$parameters
    is_meanstructure <- out2$is_meanstructure
    fitstats_joint <- out2$fitstats_joint
    partable_joint <- out2$partable_joint
    sample_stats <- out2$sample_stats

    #**** parameter and fit statistics summary
    parameters_summary <- lsem_parameter_summary( parameters=parameters,
                                moderator.density=out$moderator.density,
                                verbose=verbose )
    weights0 <- weights
    if (is_imputed){
        weights0 <- lsem_aggregate_statistics(x=weights)
    }
    out$moderator.density$Neff <- colSums(weights0)
    obji0 <- obji <- out$moderator.density
    obji$moderator <- obji$moderator
    obji$wgt <- obji$wgt
    obji$Neff <- obji$Neff
    Y <- obji0[,-1]
    dfr <- data.frame( M=colMeans(Y), SD=apply( Y, 2, stats::sd ),
                            min=apply( Y, 2, min ), max=apply( Y, 2, max ) )
    if (is_imputed){
        x <- (data[[1]])[, moderator]
    } else {
        x <- data[,moderator]
    }
    dfr0 <- data.frame(M=mean(x, na.rm=TRUE ), SD=out$sd.moderator,
                        min=min(x, na.rm=TRUE ), max=max(x, na.rm=TRUE ) )
    obji <- rbind( dfr0, dfr)
    rownames(obji) <- NULL
    moderator.stat <- data.frame(variable=c('moderator','wgt', 'Neff'), obji )

    #-- model parameters
    model_parameters <- setdiff( paste(parameters_summary$par), fit_measures)

    #- add attr 'Nimp' to data
    attr(data, 'Nimp') <- Nimp
    attr(data, 'N') <- out$N

    #-- output
    s2 <- Sys.time()
    time <- s2-s1
    res <- list( parameters=parameters, weights=weights,
                    parameters_summary=parameters_summary,
                    bw=out$bw, h=h, N=out$N, nobs=nobs,
                    moderator.density=out$moderator.density,
                    moderator.stat=moderator.stat, moderator.grouped=moderator.grouped,
                    m.moderator=m.moderator, sd.moderator=sd.moderator,
                    moderator=moderator, moderator.grid=moderator.grid,
                    lavmodel=lavmodel, residualize=residualize,
                    data=data, residualized.intercepts=residualized_intercepts,
                    lavaan.args=lavaan.args, lsem_args=lsem_args,
                    fit_measures=fit_measures, model_parameters=model_parameters,
                    s1=s1, s2=s2, time=time,
                    standardized=standardized, standardized_type=standardized_type,
                    lavaan_fct=lavaan_fct, use_lavaan_survey=use_lavaan_survey,
                    pseudo_weights=pseudo_weights, use_pseudo_weights=use_pseudo_weights,
                    sufficient_statistics=sufficient_statistics,
                    variables_ordered=variables_ordered,
                    moderator_variable=moderator_variable,
                    sampling_weights=sampling_weights,
                    no_sampling_weights=no_sampling_weights,
                    is_meanstructure=is_meanstructure,
                    par_invariant=par_invariant, par_linear=par_linear,
                    par_quadratic=par_quadratic,
                    est_joint=est_joint, fitstats_joint=fitstats_joint,
                    partable_joint=partable_joint,
                    dif_effects=dif_effects, sample_stats=sample_stats,
                    loc_linear_smooth=loc_linear_smooth,
                    se=se, compute_se=compute_se, is_imputed=is_imputed, Nimp=Nimp,
                    class_boot=FALSE, type=type, CALL=CALL )
    class(res) <- 'lsem'
    return(res)
}
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.