R/prmse.subscores.R

Defines functions .cronbach.alpha prmse.subscores.scales prmse.subscores

Documented in prmse.subscores.scales

## File Name: prmse.subscores.R
## File Version: 0.14

#--------------------------------------------------------------------------
# calculation of PRMSE for Subscores according to Haberman (2007)
prmse.subscores <- function( data.X, data.Z){
    ind <- which( rowSums( is.na( data.Z ) ) > 0 )
#    require(psy)
    if (length(ind) > 0){
        data.X <- data.X[ - ind, ]
        data.Z <- data.Z[ - ind, ]
                    }
    aX <- .cronbach.alpha( data.X )
    aZ <- .cronbach.alpha( data.Z )
    res <- list( "N"=aX$sample.size,  "nX"=aX$number.of.items )
    score.X <- rowSums( data.X )
    score.Z <- rowSums( data.Z )
    res$M.X <- mean( score.X )
    res$Var.X <- stats::var( score.X )
    res$SD.X <- sqrt( res$Var.X )
    res$alpha.X <- aX$alpha
    res$Var.TX <- res$Var.X * res$alpha.X
    res$Var.EX <- res$Var.X * ( 1 - res$alpha.X )
    res$nZ <- aZ$number.of.items
    res$M.Z <- mean( score.Z )
    res$Var.Z <- stats::var( score.Z )
    res$SD.Z <- sqrt( res$Var.Z )
    res$alpha.Z <- aZ$alpha
    res$Var.TZ <- res$Var.Z * res$alpha.Z
    res$Var.EZ <- res$Var.Z * ( 1 - res$alpha.Z )
    res$cor.X_Z <- stats::cor( score.X, score.Z )
    res$cor.X_Y <- stats::cor( score.X, score.Z - score.X )
    res$cor.TX_TY <- res$cor.X_Y / sqrt( res$alpha.X ) /
                sqrt( .cronbach.alpha( data.Z[, setdiff( colnames(data.Z), colnames(data.X) ) ] )$alpha )
    res$Var.TX <- res$Var.X - res$Var.EX
    res$Var.TZ <- res$Var.Z - res$Var.EZ

    res$cor.TX_TZ <- res$cor.X_Z / sqrt( res$alpha.X * res$alpha.Z ) -
                        res$Var.EX / sqrt( res$Var.TX * res$Var.Z )
    res$cor.TX_Z <- res$cor.TX_TZ * sqrt( res$alpha.Z )
    # RMSE based on subscores (Kelley formula)
    res$rmse.X <- sqrt( res$Var.TX * ( 1 - res$alpha.X ) )
    # RMSE based on total scores
    res$rmse.Z <- sqrt( res$Var.TX * ( 1 - res$cor.TX_Z^2 ) )
    # calculation of regression coefficients
    regr <- matrix( 0, nrow=3, ncol=3 )
    colnames(regr) <- c("Int", "beta.X", "beta.Z" )
    rownames(regr) <- c("Mod.X", "Mod.Z", "Mod.XZ" )
    regr[ "Mod.X", "beta.X" ] <- res$alpha.X
    regr[ "Mod.X", "Int" ] <- res$M.X - res$alpha.X * res$M.X
    regr[ "Mod.Z", "beta.Z" ] <- res$cor.TX_Z * sqrt(res$Var.TX) / sqrt( res$Var.Z )
    regr[ "Mod.Z", "Int" ] <- res$M.X - regr[ "Mod.Z", "beta.Z" ] * res$M.Z
    regr[ "Mod.XZ", "beta.X" ] <- ( sqrt( res$Var.TX ) * ( sqrt( res$alpha.X ) - res$cor.TX_Z * res$cor.X_Z ) ) /
                                        ( res$SD.X * ( 1 - res$cor.X_Z^2 ) )
    regr[ "Mod.XZ", "beta.Z" ] <- ( sqrt( res$Var.TX ) * ( res$cor.TX_Z - sqrt(res$alpha.X) * res$cor.X_Z ) ) /
                                        ( res$SD.Z * ( 1 - res$cor.X_Z^2 ) )
    regr[ "Mod.XZ", "Int" ] <- res$M.X - regr[ "Mod.X", "beta.X" ] * res$M.X - regr[ "Mod.Z", "beta.Z" ] * res$M.Z
    # calculation of RMSE of the regression on both subscores and total score
    pcor <- (( res$cor.TX_Z - sqrt( res$alpha.X) * res$cor.X_Z ) /
                    sqrt( 1 - res$alpha.X ) / sqrt( 1 - res$cor.X_Z^2 ) )
    res$rmse.XZ <- res$rmse.X * sqrt( 1 - pcor^2)
    res$prmse.X <- res$alpha.X
    res$prmse.Z <- res$cor.TX_Z^2
    res$prmse.XZ <- 1 - ( 1 - res$alpha.X )*( 1 -pcor^2 )
    list( "res"=res, "regr"=regr )
        }
#..................................................................................



#--------------------------------------------------------------------------------
# calculation of PRMSE for a number of subscales
prmse.subscores.scales <- function( data, subscale ){
        # data ... original data frame
        # scales ... classification of items in data into scales
        scales <- sort( unique( subscale ) )
        dfr <- NULL
        for ( ss in scales ){
            # ss <- scales[1]
            res1 <- prmse.subscores(  data.X=data[, subscale==ss  ], data.Z=data )
            dfr <- cbind( dfr, unlist( res1$res ) )
                }
        colnames(dfr) <- scales
        return(dfr)
            }
#--------------------------------------------------------------------------------




# aux function for Cronbach's Alpha
    .cronbach.alpha <- function( data ){
        # covariance
        c1 <- stats::cov( data, use="pairwise.complete.obs" )
        # mean covariance
        c1a <- c1 ; diag(c1a) <- 0
        I <- ncol(data)
        mc <- sum(c1a) / ( I^2 - I )
        # mean variance
        mv <- mean( diag(c1) )
        alpha <- I * mc / ( mv + (I-1) *mc )
        mean.tot <- mean( rowSums(data) )
        var.tot <- var( rowSums( data ) )
         res <- list( "I"=I, "alpha"=alpha,
                "mean.tot"=mean.tot,  "var.tot"=var.tot,
                "sample.size"=nrow(data),
                "number.of.items"=I )
        return(res)
            }
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.