#' sl3 extension: Nonlinear Optimization via Augmented Lagrange
#'
#' This version is a copy of sl3::Lrnr_solnp with additional consideration
#' for users that want explicit control over printed output of solnp
#'
#' This meta-learner provides fitting procedures for any pairing of loss
#' function and metalearner function, subject to constraints. The optimization
#' problem is solved by making use of \code{\link[Rsolnp]{solnp}}, using
#' Lagrange multipliers. For further details, consult the documentation of the
#' \code{Rsolnp} package.
#'
#' @docType class
#'
#' @importFrom R6 R6Class
#' @import sl3
#'
#' @export
#'
#' @keywords data
#'
#' @return Learner object with methods for training and prediction. See
#' \code{\link{Lrnr_base}} for documentation on learners.
#'
#' @format \code{\link{R6Class}} object.
#'
#' @family Learners
#'
#' @section Parameters:
#' \describe{
#' \item{\code{learner_function=metalearner_linear}}{A function(alpha, X) that
#' takes a vector of covariates and a matrix of data and combines them into
#' a vector of predictions. See \link{metalearners} for options.}
#' \item{\code{loss_function=loss_squared_error}}{A function(pred, truth) that
#' takes prediction and truth vectors and returns a loss vector. See
#' \link{loss_functions} for options.}
#' \item{\code{make_sparse=TRUE}}{If TRUE, zeros out small alpha values.}
#' \item{\code{convex_combination=TRUE}}{If \code{TRUE}, constrain alpha to
#' sum to 1.}
#' \item{\code{init_0=FALSE}}{If TRUE, alpha is initialized to all 0's, useful
#' for TMLE. Otherwise, it is initialized to equal weights summing to 1,
#' useful for SuperLearner.}
#' \item{\code{trace=0}}{The value of the objective function and the
#' parameters is printed at every major iteration (default 0).}
#' \item{\code{tol=0}}{Relative tolerance on feasibility and optimality
#' (default 1e-5, default in Rsolnp package is 1e-8).}
#' \item{\code{...}}{Not currently used.}
#' }
#'
Lrnr_solnp_quiet <- R6Class(
classname = "Lrnr_solnp_quiet",
inherit = Lrnr_base, portable = TRUE,
class = TRUE,
public = list(
initialize = function(learner_function = metalearner_linear,
loss_function = loss_squared_error,
make_sparse = TRUE, convex_combination = TRUE,
init_0 = FALSE, tol = 1e-5, trace=0, ...) {
params <- args_to_list()
super$initialize(params = params, ...)
}
),
private = list(
.properties = c(
"continuous", "binomial", "categorical", "weights",
"offset"
),
.train = function(task) {
requireNamespace("sl3", quietly = TRUE)
verbose <- getOption("sl3.verbose")
params <- self$params
learner_function <- params$learner_function
loss_function <- params$loss_function
outcome_type <- self$get_outcome_type(task)
# specify data
X <- as.matrix(task$X)
Y <- outcome_type$format(task$Y)
if (task$has_node("offset")) {
offset <- task$offset
} else {
offset <- NULL
}
weights <- task$weights
risk <- function(alphas) {
requireNamespace("sl3", quietly = TRUE)
if (!is.null(offset)) {
preds <- learner_function(alphas, X, offset)
} else {
preds <- learner_function(alphas, X)
}
losses <- loss_function(preds, Y)
risk <- weighted.mean(losses, weights)
return(risk)
}
if (params$convex_combination) {
eq_fun <- function(alphas) {
sum(alphas)
}
eqB <- 1
LB <- rep(0L, ncol(task$X))
} else {
eq_fun <- NULL
eqB <- NULL
LB <- NULL
}
p <- ncol(X)
if (params$init_0) {
init_alphas <- rep(0, p)
} else {
init_alphas <- rep(1 / p, p)
}
fit_object <- Rsolnp::solnp(
init_alphas, risk,
eqfun = eq_fun, eqB = eqB,
LB = LB,
control = list(trace = params$trace, tol = params$tol)
)
coefs <- fit_object$pars
names(coefs) <- colnames(task$X)
if (params$make_sparse) {
max_coef <- max(coefs)
threshold <- max_coef / 1000
coefs[coefs < threshold] <- 0
coefs <- coefs / sum(coefs)
}
fit_object$coefficients <- coefs
fit_object$training_offset <- task$has_node("offset")
fit_object$name <- "solnp"
return(fit_object)
},
.predict = function(task = NULL) {
requireNamespace("sl3", quietly = TRUE)
verbose <- getOption("sl3.verbose")
X <- as.matrix(task$X)
alphas <- self$fit_object$coefficients
if (self$fit_object$training_offset) {
predictions <- self$params$learner_function(alphas, X, task$offset)
} else {
predictions <- self$params$learner_function(alphas, X)
}
return(predictions)
},
.required_packages = c("Rsolnp")
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.