Description Usage Arguments Value Author(s) Examples
minmax_scaling normalizes a given vector using the the min-max
scaling method. More formally:
scaled = \frac{data -x_{min}}{x_{max} - x_{min}} \times (f_{max} - f_{min}) + f_{min}
| 1 | minmax_scaling(data, xmin = NULL, xmax = NULL, fmin = 0, fmax = 1)
 | 
| data | Vector with numeric data to be scaled. | 
| xmin | Optional minimum value, otherwise  | 
| xmax | Optional maximum value, otherwise  | 
| fmin | Optional minimum range value, default is 0. | 
| fmax | Optional maximum range value, default is 1. | 
The scaled data in the given range, default is between (0, 1). If
xmin = xmax the input vector data is returned.
C.A.Kapourani C.A.Kapourani@ed.ac.uk
| 1 2 | data <- c(-20, 0, 15, 20)
scaled <- minmax_scaling(data)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.