#' A Function to run a multivariate particle filter
#'
#' @param num_particles The number of particles for the particle filter for animal movement model
#' @param data A array with dimension num_bears x num_times X 2 columns with location data
#' @param mu_val Value for the mean step size
#' @param sigma_val Value for the standard deviation of step size
#' @param kappa_val Value for kappa concentration parameter in VonMises distribution
#' @param sigmasq_eta Value for eta
#' @param sigmasq_eps Value for eps
#' @return A list containing the path and the log probability of the path
#' @export
run_mvsmc <- function(num_particles, data, mu_val, sigma_val, kappa_val, sigmasq_eta, sigmasq_eps){
num_bears <- dim(data)[1]
time_points <- dim(data)[2]
particle_values <- array(0, dim=c(time_points, num_particles, 6, num_bears))
w <- matrix(0, nrow = num_particles, ncol = time_points)
# Time 1
for (i in 1:num_bears){
particle_values[1,,1:2,i] <- LearnBayes::rmnorm(num_particles, mean = c(data[i,1,1], data[i,1,2]), varcov = diag(2)*.2)
}
theta <- circular::rvonmises(num_particles * num_bears, mu = circular::circular(0), kappa = .1)
particle_values[1,,3,] <- sin(theta)
particle_values[1,,3,] <- cos(theta)
particle_values[1,,5,] <- truncnorm::rtruncnorm(num_particles, a = 0, b = Inf, mean = mu_val, sd = sigma_val)
descendents <- array(0, dim=c(num_particles, time_points))
#calculate weights
log_w <- LearnBayes::dmnorm(matrix(particle_values[1,,1:2,], nrow = num_particles, ncol = 2 * num_bears),
mean = c(t(data[,1,])), varcov = diag(num_bears * 2) * sigmasq_eps, log = T) -
LearnBayes::dmnorm(matrix(particle_values[1,,1:2,], nrow = num_particles, ncol = 2 * num_bears),
mean = c(t(data[,1,])), varcov = diag(num_bears * 2) * .2, log = T)
w[,1] <- exp(log_w)
log_w <- smcUtils::renormalize(log_w, log = T)
descendents[,1] <- sample(num_particles, replace = T, prob = log_w)
particle_values[1,,,] <- particle_values[1,descendents[,1] ,,]
# Time 2:T
for (t in 2:time_points){
# propose angles
x_vals <-
home_path <- tibble::tibble(x = rep(data[,1,1], each = num_particles) -
as.numeric(particle_values[t-1,,1,]) ,
y = rep(data[,1, 2], each = num_particles)
- as.numeric(particle_values[t-1,,2,]))
home_angle <- useful::cart2pol(home_path$x, home_path$y)$theta
particle_values[t,,6,] <- circular::rvonmises(num_particles * num_bears, mu = circular::circular(0), kappa = kappa_val)
particle_values[t,,3,] <- cos(particle_values[t,,6,] + home_angle) # x coord
particle_values[t,,4,] <- sin(particle_values[t,,6,] + home_angle) # y coord
# propose distance
particle_values[t,,5,] <- truncnorm::rtruncnorm(num_particles * num_bears, a = 0, b= Inf, mean = mu_val, sd = sigma_val)
u_array <- array(0, dim = c(num_particles, 2, num_bears) )
u_array[,1,] <- u_array[,2,] <- particle_values[t,,5,]
# update particle locations
particle_values[t,,1:2,] <- particle_values[t-1,,1:2,] + u_array * particle_values[t,,3:4,] +
array(stats::rnorm(num_particles * 2 * num_bears, mean = 0, sd = sqrt(sigmasq_eta)), dim = c(num_particles, 2, num_bears))
# calculate weights
log_w <- LearnBayes::dmnorm(matrix(particle_values[t,,1:2,], nrow = num_particles, ncol = 2 * num_bears),
mean = c(t(data[,t,])), varcov = diag(num_bears * 2) * sigmasq_eps, log = T)
w[,t] <- exp(log_w)
log_w <- smcUtils::renormalize(log_w, log = T)
descendents[,t] <- sample(num_particles, replace = T, prob = log_w)
particle_values[t,,,] <- particle_values[t, descendents[,t],,]
}
index <- rep(0, time_points)
index[time_points] <- sample(num_particles, 1)
path <- array(0, dim=c(time_points,6, num_bears))
path[time_points,,] <- particle_values[time_points,index[time_points],,]
for (iter in time_points:2){
index[iter- 1] <- descendents[index[iter], iter]
path[iter - 1,,] <- particle_values[iter - 1, index[iter-1],,]
}
return(list(path = path, log_pi = sum(log(colMeans(w)))))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.