R/run_smc.R

Defines functions run_smc

Documented in run_smc

#' A Function to run a particle filter
#'
#' @param num_particles The number of particles for the particle filter for animal movement model
#' @param data A data frame with num_times rows and 2 columns with location data
#' @param mu_val Value for the mean step size
#' @param sigma_val Value for the standard deviation of step size
#' @param mu_theta_val Vector for 2-D Normal mean for projected Normal Distribution
#' @param sigmasq_eta Value for eta
#' @param sigmasq_eps Value for eps
#' @return A list containing the path and the log probability of the path
#' @export
run_smc <- function(num_particles, data, mu_val, sigma_val, mu_theta_val, sigmasq_eta, sigmasq_eps){
  time_points <- nrow(data)
  particle_values <- array(0, dim=c(time_points, num_particles, 6))
  w <- matrix(0, nrow = num_particles, ncol = time_points)

  # Time 1
  particle_values[1,,1:2] <- LearnBayes::rmnorm(num_particles, mean = c(data[1,1], data[1,2]), varcov = diag(2)*.1)
  theta_tmp <- mnormt::rmnorm(num_particles, mean = mu_theta_val, varcov = diag(2))
  theta <- useful::cart2pol(theta_tmp[,1], theta_tmp[,2])$theta
  particle_values[1,,3] <- sin(theta)
  particle_values[1,,3] <- cos(theta)
  particle_values[1,,5] <- truncnorm::rtruncnorm(num_particles, a = 0, b = Inf, mean = mu_val, sd = sigma_val)
  descendents <- array(0, dim=c(num_particles, time_points))

  #calculate weights
  log_w <- LearnBayes::dmnorm(particle_values[1,,1:2], mean = c(data[1,1],data[1,2]), varcov = diag(2) * sigmasq_eps, log = T) -
    LearnBayes::dmnorm(particle_values[1,,1:2], mean = c(data[1,1],data[1,2]), varcov = diag(2) * .1, log = T)
  w[,1] <- exp(log_w)
  log_w <- smcUtils::renormalize(log_w, log = T)
  descendents[,1] <- sample(num_particles, replace = T, prob = log_w)
  particle_values[1,,] <- particle_values[1,descendents[,1] ,]

  # Time 2:T
  for (t in 2:time_points){
    # propose angles
    home_path <- tibble::tibble(x = data[1, 1] - particle_values[t-1,,1]  ,
                                y = data[1, 2] - particle_values[t-1,,2]  )
    home_angle <-  useful::cart2pol(home_path$x, home_path$y)$theta
    theta_tmp <- mnormt::rmnorm(num_particles, mean = mu_theta_val, varcov = diag(2))
    particle_values[t,,6] <- useful::cart2pol(theta_tmp[,1], theta_tmp[,2])$theta
    particle_values[t,,3] <- cos(particle_values[t,,6] + home_angle) # x coord
    particle_values[t,,4] <- sin(particle_values[t,,6] + home_angle) # y coord

    # propose distance
    particle_values[t,,5] <- truncnorm::rtruncnorm(num_particles, a = 0, b= Inf, mean = mu_val, sd = sigma_val)

    # update particle locations
    particle_values[t,,1:2] <- particle_values[t-1,,1:2] + particle_values[t,,5] * particle_values[t,,3:4] +
      stats::rnorm(num_particles * 2, mean = 0, sd = sqrt(sigmasq_eta))

    # calculate weights
    log_w <- LearnBayes::dmnorm(particle_values[t,,1:2], mean = c(data[t,1], data[t,2]), varcov = diag(2) * sigmasq_eps, log = T)
    w[,t] <- exp(log_w)
    log_w <- smcUtils::renormalize(log_w, log = T)
    descendents[,t] <- sample(num_particles, replace = T, prob = log_w)
    particle_values[t,,] <- particle_values[t, descendents[,t],]
  }
  index <- rep(0, time_points)
  index[time_points] <- sample(num_particles, 1)
  path <- array(0, dim=c(time_points,6))
  path[time_points,] <- particle_values[time_points,index[time_points],]
  for (iter in time_points:2){
    index[iter- 1] <- descendents[index[iter], iter]
    path[iter - 1,] <- particle_values[iter - 1, index[iter-1],]
  }
  return(list(path = path, log_pi = sum(log(colMeans(w)))))
}
andyhoegh/moveR documentation built on Feb. 8, 2020, 11:20 p.m.